A robust bulk-solvent correction and anisotropic scaling procedure

A robust method for determining bulk-solvent and anisotropic scaling parameters for macromolecular refinement is described. A maximum-likelihood target function for determination of flat bulk-solvent model parameters and overall anisotropic scale factor is also proposed.

[1]  D E Tronrud,et al.  TNT refinement package. , 1997, Methods in enzymology.

[2]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[3]  Paul D. Adams,et al.  On the handling of atomic anisotropic displacement parameters , 2002 .

[4]  A. Urzhumtsev Low‐resolution phases: influence on SIR syntheses and retrieval with double‐step filtration , 1991 .

[5]  R. Read,et al.  Improved Structure Refinement Through Maximum Likelihood , 1996 .

[6]  J. Badger,et al.  Modeling and refinement of water molecules and disordered solvent. , 1997, Methods in enzymology.

[7]  A. Urzhumtsev,et al.  On the use of low-resolution data for translation search in molecular replacement. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[8]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[9]  Vladimir Y. Lunin,et al.  A procedure compatible with X-PLOR for the calculation of electron-density maps weighted using an R-free-likelihood approach , 1996 .

[10]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[11]  W. Hendrickson,et al.  Description of Overall Anisotropy in Diffraction from Macromolecular Crystals , 1987 .

[12]  A T Brünger,et al.  Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. , 1994, Journal of molecular biology.

[13]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[14]  Nicholas K. Sauter,et al.  The Computational Crystallography Toolbox: crystallographic algorithms in a reusable software framework , 2002 .

[15]  R. Read Structure-factor probabilities for related structures , 1990 .

[16]  A. Urzhumtsev,et al.  [38] Low-resolution phasing. , 1997, Methods in enzymology.

[17]  R. Kretsinger,et al.  Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. , 1976, Journal of molecular biology.

[18]  V. Lunin,et al.  R-free likelihood-based estimates of errors for phases calculated from atomic models , 1995 .

[19]  G. Bricogne A multisolution method of phase determination by combined maximization of entropy and likelihood. III. Extension to powder diffraction data , 1991 .

[20]  Alexandre Urzhumtsev,et al.  Improvement of protein phases by coarse model modification , 1984 .

[21]  E. Ciszak,et al.  The three-dimensional structure of the antigen-binding fragment of a monoclonal antibody to human interleukin-2 in two crystal forms at 2.2 and 2.9 Å resolution , 2000, Russian Journal of Bioorganic Chemistry.

[22]  S. Parkin,et al.  XABS2: an empirical absorption correction program , 1995 .

[23]  M. Karplus,et al.  Crystallographic refinement by simulated annealing: application to crambin , 1989 .

[24]  G. Sheldrick,et al.  SHELXL: high-resolution refinement. , 1997, Methods in enzymology.

[25]  S. Phillips,et al.  Structure and refinement of oxymyoglobin at 1.6 A resolution. , 1980, Journal of molecular biology.