Observability-Based Optimal Sensor Placement for Flapping Airfoil Wake Estimation

This work considers the optimal sensor placement problem for a general nonlinear system using the eigenvalues of the observability Gramian in the cost function. The problem is formulated as a mixed-integer convex optimization problem. Using the empirical observability Gramian, the input data to this optimization problem are computed from a simulation of the nonlinear system with no analytical model required. A piecewise linear approximation to the observability Gramian is proposed using special ordered sets of type two, allowing a coarser sensor location mesh and thus fewer binary variables and shorter solution times compared with standard gridded approaches. The solution methodology is applied to vortex estimation in the wake of a flapping airfoil using velocity sensors on the surface of the airfoil, which is modeled using unsteady potential flow and a Joukowski conformal mapping. Resulting optimal sensor sets are found near the trailing edge in pairs on the upper and lower surface. Although the observab...

[1]  Kristi A. Morgansen,et al.  Observability optimization for the nonholonomic integrator , 2013, 2013 American Control Conference.

[2]  J. Montgomery,et al.  The lateral line can mediate rheotaxis in fish , 1997, Nature.

[3]  P. Newton The N-Vortex Problem , 2001 .

[4]  K. Mohseni,et al.  A model of the lateral line of fish for vortex sensing , 2010, Bioinspiration & biomimetics.

[5]  Derek A. Paley,et al.  Observability-based optimization for flow sensing and control of an underwater vehicle in a uniform flowfield , 2013, 2013 American Control Conference.

[6]  N.M. Patrikalakis,et al.  Path Planning of Autonomous Underwater Vehicles for Adaptive Sampling Using Mixed Integer Linear Programming , 2008, IEEE Journal of Oceanic Engineering.

[7]  Stephen J. Wright,et al.  Primal-Dual Interior-Point Methods , 1997 .

[8]  T. Pitcher,et al.  A blind fish can school. , 1976, Science.

[9]  Wei Xian,et al.  Bat wing sensors support flight control , 2011, Proceedings of the National Academy of Sciences.

[10]  Juergen Hahn,et al.  Determining Optimal Sensor Locations for State and Parameter Estimation for Stable Nonlinear Systems , 2005 .

[11]  Kristi A. Morgansen,et al.  Path planning to optimize observability in a planar uniform flow field , 2013, 2013 American Control Conference.

[12]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[13]  Oliver Sawodny,et al.  Optimal sensor placement for state estimation of flexible shell structures , 2011, Proceedings of 2011 International Conference on Fluid Power and Mechatronics.

[14]  R. E. Brown,et al.  AIRFLOW SENSORS IN THE AVIAN WING , 1993 .

[15]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[16]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[17]  Michael Ghil,et al.  Extended Kalman filtering for vortex systems. Part 1: Methodology and point vortices , 1998 .

[18]  S.A. Soman,et al.  Optimal Multistage Scheduling of PMU Placement: An ILP Approach , 2008, IEEE Transactions on Power Delivery.

[19]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[20]  Jeff D. Eldredge,et al.  Wake Sensing for Aircraft Formation Flight , 2012 .

[21]  Alain Vande Wouwer,et al.  An approach to the selection of optimal sensor locations in distributed parameter systems , 2000 .

[22]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[23]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[24]  António Manuel Santos Pascoal,et al.  Optimal sensor placement for underwater positioning with uncertainty in the target location , 2011, 2011 IEEE International Conference on Robotics and Automation.

[25]  Stephen P. Boyd,et al.  Recent Advances in Learning and Control , 2008, Lecture Notes in Control and Information Sciences.

[26]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[27]  Michael Ghil,et al.  Extended Kalman filtering for vortex systems. Part II: Rankine vortices and observing-system design , 1998 .

[28]  Gilead Tadmor,et al.  Observers and feedback control for a rotating vortex pair , 2004, IEEE Transactions on Control Systems Technology.

[29]  Deva K. Borah,et al.  Optimal 3-D Landmark Placement for Vehicle Localization Using Heterogeneous Sensors , 2013, IEEE Transactions on Vehicular Technology.

[30]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[31]  Arthur J. Krener,et al.  Measures of unobservability , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[32]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[33]  Robert W. Blake,et al.  Fish without footprints , 1991 .

[34]  Francesco Bullo,et al.  Optimal sensor placement and motion coordination for target tracking , 2006, Autom..

[35]  Perry Y. Li,et al.  Modeling and estimation of hydrodynamic potentials , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[36]  Arthur J. Krener Observability of vortex flows , 2008, 2008 47th IEEE Conference on Decision and Control.

[37]  Jerome P. Lynch,et al.  Optimal sensor placement for health monitoring of civil structures , 2011, ACC.