Determination of fractal dimensions for geometrical multifractals

[1]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[2]  Argoul,et al.  Self-similarity of diffusion-limited aggregates and electrodeposition clusters. , 1988, Physical review letters.

[3]  A. Vulpiani,et al.  Anomalous scaling laws in multifractal objects , 1987 .

[4]  H. Stanley,et al.  Multifractal phenomena in physics and chemistry , 1988, Nature.

[5]  Tamás Vicsek,et al.  Geometrical multifractality of growing structures , 1987 .

[6]  Witten,et al.  Scaling properties for the surfaces of fractal and nonfractal objects: An infinite hierarchy of critical exponents. , 1986, Physical review. A, General physics.

[7]  Hayakawa,et al.  Scaling structure of the growth-probability distribution in diffusion-limited aggregation processes. , 1987, Physical review. A, General physics.

[8]  B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.

[9]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[10]  T. Vicsek Fractal Growth Phenomena , 1989 .

[11]  Coniglio,et al.  Growth probability distribution in kinetic aggregation processes. , 1986, Physical review letters.

[12]  Michael Ghil,et al.  Turbulence and predictability in geophysical fluid dynamics and climate dynamics , 1985 .

[13]  Redner,et al.  Anomalous voltage distribution of random resistor networks and a new model for the backbone at the percolation threshold. , 1985, Physical review. B, Condensed matter.

[14]  Meakin,et al.  Fluctuations and distributions in random aggregates. , 1987, Physical review. A, General physics.