Consumer memory and price fluctuations in commodity markets: An integrodifferential model

[1]  M. Weidenbaum,et al.  Plenary lectures: Are economic forecasts any good? , 1988 .

[2]  Probabilistic properties of deterministic systems , 1987, Acta Applicandae Mathematicae.

[3]  M. Mackey,et al.  A Model for the Regulation of Mammalian Platelet Production a , 1987 .

[4]  A. Lasota,et al.  Differential equations with dynamical perturbations , 1986 .

[5]  Harlan W. Stech,et al.  Hopf bifurcation calculations for functional differential equations , 1985 .

[6]  V. Zarnowitz Recent Work on Business Cycles in Historical Perspective: Review of Theories and Evidence , 1984 .

[7]  T. D. Howroyd,et al.  Cournot oligopoly models with time delays , 1984 .

[8]  Richard M. Goodwin,et al.  Nonlinear Models of Fluctuating Growth , 1984 .

[9]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[10]  H. Walther,et al.  Existence of chaos in control systems with delayed feedback , 1983 .

[11]  P. van den Driessche,et al.  On a two lag differential delay equation , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[12]  Michael C. Mackey,et al.  The dynamics of production and destruction: Analytic insight into complex behavior , 1982 .

[13]  Hans-Otto Walther,et al.  Homoclinic solution and chaos in , 1981 .

[14]  L. Glass,et al.  PATHOLOGICAL CONDITIONS RESULTING FROM INSTABILITIES IN PHYSIOLOGICAL CONTROL SYSTEMS * , 1979, Annals of the New York Academy of Sciences.

[15]  Harlan W. Stech,et al.  The effect of time lags on the stability of the equilibrium state of a population growth equation , 1978 .

[16]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[17]  A. Myshkis,et al.  ON CERTAIN PROBLEMS IN THE THEORY OF DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENT , 1977 .

[18]  J. Horowitz,et al.  Instability in a hippocampal neural network. , 1976, Computer programs in biomedicine.

[19]  K. Hadeler On the stability of the stationary state of a population growth equation with time-lag , 1976, Journal of mathematical biology.

[20]  H. Walther On a transcendental equation in the stability analysis of a population growth model , 1976, Journal of mathematical biology.

[21]  R M Nisbet,et al.  Population dynamics in a periodically varying environment. , 1976, Journal of theoretical biology.

[22]  Roger D. Nussbaum,et al.  Periodic solutions of some nonlinear autonomous functional differential equations , 1974 .

[23]  E. Winston Asymptotic Stability for Ordinary Differential Equations with Delayed Perturbations , 1974 .

[24]  A. B. Larson The Hog Cycle as Harmonic Motion , 1964 .

[25]  J. Chipman,et al.  The Theory of Economic Dynamics , 1956 .

[26]  N. D. Hayes Roots of the Transcendental Equation Associated with a Certain Difference‐Differential Equation , 1950 .

[27]  M. Kalecki Studies in economic dynamics , 1944 .

[28]  Eugen Slutzky Summation of random causes as the source of cyclic processes , 1937 .

[29]  M. Kalecki,et al.  A Theory of the Business Cycle , 1937 .

[30]  M. Kalecki,et al.  A Macrodynamic Theory of Business Cycles , 1935 .

[31]  Von Wassily W. Leontief Verzögerte Angebotsanpassung und partielles Gleichgewicht , 1934 .

[32]  J. Haldane A Contribution to the Theory of Price Fluctuations , 1934 .

[33]  N. Kaldor,et al.  A Classificatory Note on the Determinateness of Equilibrium , 1934 .

[34]  U. Ricci Die „synthetische Ökonomie“ von Henry Ludwell Moore , 1930 .

[35]  J. Tinbergen Bestimmung und Deutung von Angebotskurven Ein Beispiel , 1930 .

[36]  T. Puu Nonlinear economic dynamics , 1989 .

[37]  J. Sugie Oscillating solutions of scalar delay-differential equations with state dependence , 1988 .

[38]  L. Glass,et al.  From Clocks to Chaos: The Rhythms of Life , 1988 .

[39]  Michael C. Mackey,et al.  From Clocks to Chaos , 1988 .

[40]  M. Mackey,et al.  Mixed Feedback: A Paradigm for Regular and Irregular Oscillations , 1987 .

[41]  H. Lorenz,et al.  Business Cycle Theory , 1987 .

[42]  J. Mallet-Paret,et al.  A BIFURCATION GAP FOR A SINGULARLY PERTURBED DELAY EQUATION , 1986 .

[43]  Jean-Michel Grandmont,et al.  Nonlinear Economic Dynamics: Introduction , 1986 .

[44]  H. Walther Bifurcation from a heteroclinic solution in differential delay equations , 1985 .

[45]  K. Cooke Stability of Delay Differential Equations with Applications in Biology and Medicine , 1985 .

[46]  U. Heiden Stochastic Properties of Simple Differential — Delay Equations , 1985 .

[47]  U. an der Heiden,et al.  The dynamics of recurrent inhibition , 1984, Journal of mathematical biology.

[48]  J. Kato Stability in functional differential equations , 1980 .

[49]  U. an der Heiden Delays in physiological systems. , 1979, Journal of mathematical biology.

[50]  Roger D. Nussbaum,et al.  Differential-delay equations with two time lags , 1978 .

[51]  R. D. Driver,et al.  A Functional-Differential System of Neutral Type Arising in a Two-Body Problem of Classical Electrodynamics , 1963 .

[52]  R. Goodwin,et al.  The Non-linear Accelerator and the Persistence of Business Cycles , 1951 .