The role of HIF1α in renal cell carcinoma tumorigenesis

[1]  M. Bogyo,et al.  Abstract 1181: The Apoptosis repressor with a CARD domain (ARC) is a direct HIF1 target gene and promotes survival and proliferation of VHL deficient renal cancer cells , 2014 .

[2]  A. Belldegrun,et al.  Poor prognosis and advanced clinicopathological features of clear cell renal cell carcinoma (ccRCC) are associated with cytoplasmic subcellular localisation of Hypoxia inducible factor-2α. , 2014, European journal of cancer.

[3]  M. Ferrari,et al.  XBP1 Promotes Triple Negative Breast Cancer By Controlling the HIF1 α Pathway , 2014, Nature.

[4]  P. A. Futreal,et al.  Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing , 2014, Nature Genetics.

[5]  R. Sun,et al.  Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. , 2014, Cell metabolism.

[6]  M. Carini,et al.  VHL and HIF-1α: gene variations and prognosis in early-stage clear cell renal cell carcinoma , 2014, Medical Oncology.

[7]  G. Semenza,et al.  Ganetespib blocks HIF-1 activity and inhibits tumor growth, vascularization, stem cell maintenance, invasion, and metastasis in orthotopic mouse models of triple-negative breast cancer , 2014, Journal of Molecular Medicine.

[8]  M. Bogyo,et al.  The Apoptosis Repressor with a CARD Domain (ARC) Gene Is a Direct Hypoxia-Inducible Factor 1 Target Gene and Promotes Survival and Proliferation of VHL-Deficient Renal Cancer Cells , 2013, Molecular and Cellular Biology.

[9]  J. Gribben,et al.  HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. , 2013, Cell stem cell.

[10]  R. Grenman,et al.  Prognostic markers in stage I oral cavity squamous cell carcinoma , 2013, The Laryngoscope.

[11]  S. Matsufuji,et al.  Rho-kinase inhibition prevents the progression of diabetic nephropathy by downregulating hypoxia-inducible factor 1α. , 2013, Kidney international.

[12]  G. Semenza Cancer–stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis , 2013, Oncogene.

[13]  H. Aburatani,et al.  Integrated molecular analysis of clear-cell renal cell carcinoma , 2013, Nature Genetics.

[14]  R. Moreno-Sánchez,et al.  HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. , 2013, Carcinogenesis.

[15]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of clear cell renal cell carcinoma , 2013, Nature.

[16]  The Cancer Genome Atlas Research Network COMPREHENSIVE MOLECULAR CHARACTERIZATION OF CLEAR CELL RENAL CELL CARCINOMA , 2013, Nature.

[17]  Gang Wang,et al.  Activation of HIF2α in kidney proximal tubule cells causes abnormal glycogen deposition but not tumorigenesis. , 2013, Cancer research.

[18]  M. Reginato,et al.  The Oncogene HER2/neu (ERBB2) Requires the Hypoxia-inducible Factor HIF-1 for Mammary Tumor Growth and Anoikis Resistance* , 2013, The Journal of Biological Chemistry.

[19]  G. Melillo,et al.  Autocrine production of IL-11 mediates tumorigenicity in hypoxic cancer cells. , 2013, The Journal of clinical investigation.

[20]  Ung-il Chung,et al.  Transcription factor YY1 contributes to tumor growth by stabilizing hypoxia factor HIF-1α in a p53-independent manner. , 2013, Cancer research.

[21]  H. Neumayer,et al.  Action of hypoxia‐inducible factor in liver and kidney from mice with Pax8‐rtTA‐based deletion of von Hippel‐Lindau protein , 2013, Acta physiologica.

[22]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[23]  M. Bogyo,et al.  The Apoptosis Repressor with a CARD Domain ( ARC ) is a Direct HIF 1 Target Gene and Promotes Survival and Proliferation of VHL Deficient Renal Cancer Cells , 2013 .

[24]  Sayaka Tanaka,et al.  Transcription Factor YY 1 Contributes to Tumor Growth by Stabilizing Hypoxia Factor HIF-1 a in a p 53-Independent Manner , 2013 .

[25]  A. Regev,et al.  The Histone Deacetylase SIRT6 Is a Tumor Suppressor that Controls Cancer Metabolism , 2012, Cell.

[26]  A. Harris,et al.  CD31 angiogenesis and combined expression of HIF-1α and HIF-2α are prognostic in primary clear-cell renal cell carcinoma (CC-RCC), but HIFα transcriptional products are not: implications for antiangiogenic trials and HIFα biomarker studies in primary CC-RCC. , 2012, Carcinogenesis.

[27]  M. Valladares-Ayerbes,et al.  Searching for Hif1-α interacting proteins in renal cell carcinoma , 2012, Clinical and Translational Oncology.

[28]  R. Chen,et al.  The Acetylase/Deacetylase Couple CREB-binding Protein/Sirtuin 1 Controls Hypoxia-inducible Factor 2 Signaling* , 2012, The Journal of Biological Chemistry.

[29]  S. Siniossoglou,et al.  Hypoxia causes triglyceride accumulation by HIF-1-mediated stimulation of lipin 1 expression , 2012, Journal of Cell Science.

[30]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[31]  G. Semenza,et al.  Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. , 2012, Physiological reviews.

[32]  T. Hsu Complex cellular functions of the von Hippel–Lindau tumor suppressor gene: insights from model organisms , 2012, Oncogene.

[33]  R. Henriksson,et al.  Gene expression pattern of the epidermal growth factor receptor family and LRIG1 in renal cell carcinoma , 2012, BMC Research Notes.

[34]  Jarek Meller,et al.  VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. , 2012, Cancer cell.

[35]  P. Giannakakou,et al.  Microtubules Regulate Hypoxia-inducible Factor-1α Protein Trafficking and Activity , 2012, The Journal of Biological Chemistry.

[36]  T. Winkler,et al.  Renal Tubular HIF-2α Expression Requires VHL Inactivation and Causes Fibrosis and Cysts , 2012, PloS one.

[37]  M. Wicha,et al.  Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia , 2012, Proceedings of the National Academy of Sciences.

[38]  Brian Keith,et al.  HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression , 2011, Nature Reviews Cancer.

[39]  Y. Rustum,et al.  Prolyl hydroxylase 2 dependent and Von-Hippel-Lindau independent degradation of Hypoxia-inducible factor 1 and 2 alpha by selenium in clear cell renal cell carcinoma leads to tumor growth inhibition , 2012, BMC Cancer.

[40]  T. Wilt,et al.  Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials , 2011, BJU international.

[41]  Gang Wang,et al.  Generation of a mouse model of Von Hippel-Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF1α. , 2011, Cancer research.

[42]  P. Argani,et al.  Immunoexpression Status and Prognostic Value of mTOR and Hypoxia-Induced Pathway Members in Primary and Metastatic Clear Cell Renal Cell Carcinomas , 2011, The American journal of surgical pathology.

[43]  吳國瑞,et al.  Interplay between HDAC3 and WDR5 Is Essential for Hypoxia-Induced Epithelial-Mesenchymal Transition , 2011 .

[44]  Junjie Yao,et al.  VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting , 2011, Proceedings of the National Academy of Sciences.

[45]  Jiannis Ragoussis,et al.  High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. , 2011, Blood.

[46]  Rameen Beroukhim,et al.  Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. , 2011, Cancer discovery.

[47]  D. Hayes Bevacizumab treatment for solid tumors: boon or bust? , 2011, JAMA.

[48]  S. McKenna,et al.  VHL genetic alteration in CCRCC does not determine de-regulation of HIF, CAIX, hnRNP A2/B1 and osteopontin , 2011, Cellular Oncology.

[49]  H. Clevers,et al.  p21 loss blocks senescence following Apc loss and provokes tumourigenesis in the renal but not the intestinal epithelium , 2010, EMBO molecular medicine.

[50]  J. Meller,et al.  von Hippel-Lindau–Dependent Patterns of RNA Polymerase II Hydroxylation in Human Renal Clear Cell Carcinomas , 2010, Clinical Cancer Research.

[51]  S. McKenna,et al.  VHL Genetic Alteration in CCRCC Does Not Determine De-Regulation of HIF, CAIX, hnRNP A2/B1 and Osteopontin , 2010, Analytical cellular pathology.

[52]  M. Celeste Simon,et al.  O2 regulates stem cells through Wnt/β-catenin signalling , 2010, Nature Cell Biology.

[53]  M. Suematsu,et al.  Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. , 2010, Cell stem cell.

[54]  Cheng Cheng Zhang,et al.  The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. , 2010, Cell stem cell.

[55]  Karl J. Dykema,et al.  Reversible Epithelial to Mesenchymal Transition and Acquired Resistance to Sunitinib in Patients with Renal Cell Carcinoma: Evidence from a Xenograft Study , 2010, Molecular Cancer Therapeutics.

[56]  David W. Johnson,et al.  Inhibition of nuclear factor kappa B attenuates tumour progression in an animal model of renal cell carcinoma. , 2010, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[57]  M. Wolter,et al.  A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. , 2010, Brain : a journal of neurology.

[58]  Yuejie Zhang,et al.  Silencing of HIF-1α suppresses tumorigenicity of renal cell carcinoma through induction of apoptosis , 2010, Cancer Gene Therapy.

[59]  G. Semenza Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics , 2010, Oncogene.

[60]  Orian S. Shirihai,et al.  The Histone Deacetylase Sirt6 Regulates Glucose Homeostasis via Hif1α , 2010, Cell.

[61]  J. Meller,et al.  Hippel-Lindau–Dependent Patterns of RNA Polymerase II , 2010 .

[62]  Jiri Zavadil,et al.  Knock down of HIF-1α in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres , 2010, Molecular Cancer.

[63]  J. Engh,et al.  Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α , 2009, Oncogene.

[64]  D. Sabatini,et al.  mTOR signaling at a glance , 2009, Journal of Cell Science.

[65]  H. Moch,et al.  VHL loss causes spindle misorientation and chromosome instability , 2009, Nature Cell Biology.

[66]  Arianna Di Napoli,et al.  Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. , 2009, Cancer research.

[67]  W. Kaelin Treatment of kidney cancer , 2009, Cancer.

[68]  J. Blenis,et al.  Molecular mechanisms of mTOR-mediated translational control , 2009, Nature Reviews Molecular Cell Biology.

[69]  N. Jonjić,et al.  Hypoxia inducible factor-1α correlates with vascular endothelial growth factor A and C indicating worse prognosis in clear cell renal cell carcinoma , 2009, Journal of experimental & clinical cancer research : CR.

[70]  G. Semenza,et al.  Regulation of cancer cell metabolism by hypoxia-inducible factor 1. , 2009, Seminars in cancer biology.

[71]  Brian Keith,et al.  HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. , 2008, Cancer cell.

[72]  R. Motzer,et al.  Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial , 2008, The Lancet.

[73]  P. Sutphin,et al.  A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. , 2008, Cancer cell.

[74]  H. Moch,et al.  pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation , 2008, The EMBO journal.

[75]  D. Qian,et al.  Combination Strategy Targeting the Hypoxia Inducible Factor-1α with Mammalian Target of Rapamycin and Histone Deacetylase Inhibitors , 2008, Clinical Cancer Research.

[76]  G. Semenza,et al.  Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia* , 2008, Journal of Biological Chemistry.

[77]  R. Montironi,et al.  Prognostic Role of Tumor Necrosis, Microvessel Density, Vascular Endothelial Growth Factor and Hypoxia Inducible Factor-1α in Patients with Clear Cell Renal Carcinoma after Radical Nephrectomy in a Long Term Follow-up , 2008, International journal of immunopathology and pharmacology.

[78]  Juhie Lee,et al.  The C1772T genetic polymorphism in human HIF-1alpha gene associates with expression of HIF-1alpha protein in breast cancer. , 2008, Oncology reports.

[79]  David B Seligson,et al.  Hypoxia-Inducible Factor 1α in Clear Cell Renal Cell Carcinoma , 2007, Clinical Cancer Research.

[80]  M. Carini,et al.  Nuclear Expression of Hypoxia-inducible Factor-1α in Clear Cell Renal Cell Carcinoma is Involved in Tumor Progression , 2007, The American journal of surgical pathology.

[81]  M. Simon,et al.  Hypoxia-inducible factors: central regulators of the tumor phenotype. , 2007, Current opinion in genetics & development.

[82]  K. Grankvist,et al.  Hypoxia-Inducible Factor 1α Expression in Renal Cell Carcinoma Analyzed by Tissue Microarray , 2006 .

[83]  Kentaro Takahashi,et al.  Von Hippel-Lindau Disease , 2024 .

[84]  E. Rankin,et al.  Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. , 2006, Cancer research.

[85]  Patrick H. Maxwell,et al.  Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-Associated Renal Cell Carcinoma , 2005, Molecular and Cellular Biology.

[86]  Satish K. Tickoo,et al.  Retinoic Acid and the Histone Deacetylase Inhibitor Trichostatin A Inhibit the Proliferation of Human Renal Cell Carcinoma in a Xenograft Tumor Model , 2005, Clinical Cancer Research.

[87]  R. Osman,et al.  Inactivation of VHL by Tumorigenic Mutations That Disrupt Dynamic Coupling of the pVHL·Hypoxia-inducible Transcription Factor-1α Complex* , 2005, Journal of Biological Chemistry.

[88]  K. Grankvist,et al.  The expression of hypoxia-inducible factor 1alpha is a favorable independent prognostic factor in renal cell carcinoma. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[89]  J. Cook,et al.  The Eker rat: establishing a genetic paradigm linking renal cell carcinoma and uterine leiomyoma. , 2004, Current molecular medicine.

[90]  O. Iliopoulos,et al.  Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors. , 2004, Molecular cancer research : MCR.

[91]  J. Gnarra,et al.  Susceptibility to vascular neoplasms but no increased susceptibility to renal carcinogenesis in Vhl knockout mice. , 2003, Carcinogenesis.

[92]  T. Barrette,et al.  ONCOMINE: a cancer microarray database and integrated data-mining platform. , 2004, Neoplasia.

[93]  W. Kaelin,et al.  Inhibition of HIF2α Is Sufficient to Suppress pVHL-Defective Tumor Growth , 2003, PLoS biology.

[94]  R. Béliveau,et al.  HIF-1α mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma , 2003, Journal of Cell Science.

[95]  R. Béliveau,et al.  HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. , 2003, Journal of cell science.

[96]  C. Dinney,et al.  Blockade of the epidermal growth factor receptor signaling inhibits angiogenesis leading to regression of human renal cell carcinoma growing orthotopically in nude mice. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[97]  Richard D Klausner,et al.  The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. , 2002, Cancer cell.

[98]  Mirna Lechpammer,et al.  Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. , 2002, Cancer cell.

[99]  Kai-Uwe Eckardt,et al.  Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. , 2002, Journal of the American Society of Nephrology : JASN.

[100]  P. O’Farrell Faculty Opinions recommendation of Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. , 2001 .

[101]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[102]  R. Jaenisch,et al.  Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Till Acker,et al.  Up-regulation of hypoxia-inducible factors HIF-1α and HIF-2α under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function , 2000, Oncogene.

[104]  H. Onda,et al.  Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. , 1999, The Journal of clinical investigation.

[105]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[106]  T. Noda,et al.  Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. , 1999, Cancer research.

[107]  R. Hammer,et al.  The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. , 1998, Genes & development.

[108]  M. Gassmann,et al.  Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. , 1998, Genes & development.

[109]  O. Hankinson,et al.  ARNT-deficient mice and placental differentiation. , 1997, Developmental biology.

[110]  H. Scher,et al.  Principles and Practice of Genitourinary Oncology , 1997 .

[111]  D. Raghavan Principles and practice of genitourinary oncology , 1997 .

[112]  K. Hagino-Yamagishi,et al.  [Oncogene]. , 2019, Gan to kagaku ryoho. Cancer & chemotherapy.