Point-Set Embeddability of 2-Colored Trees

In this paper we study bichromatic point-set embeddings of 2-colored trees on 2-colored point sets, i.e., point-set embeddings of trees (whose vertices are colored red and blue) on point sets (whose points are colored red and blue) such that each red (blue) vertex is mapped to a red (resp. blue) point. We prove that deciding whether a given 2-colored tree admits a bichromatic point-set embedding on a given convex point set is an $\cal NP$-complete problem; we also show that the same problem is linear-time solvable if the convex point set does not contain two consecutive points with the same color. Furthermore, we prove a 3n/2−O(1) lower bound and a 2n upper bound (a 7n/6−O(logn) lower bound and a 4n/3 upper bound) on the minimum size of a universal point set for straight-line bichromatic embeddings of 2-colored trees (resp. 2-colored binary trees). Finally, we show that universal convex point sets with n points exist for 1-bend bichromatic point-set embeddings of 2-colored trees.

[1]  János Pach,et al.  Embedding Planar Graphs at Fixed Vertex Locations , 1998, GD.

[2]  Maciej Kurowski A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs , 2004, Inf. Process. Lett..

[3]  Emilio Di Giacomo,et al.  On Embedding a Graph on Two Sets of Points , 2006, Int. J. Found. Comput. Sci..

[4]  Stephen G. Kobourov,et al.  Colored Simultaneous Geometric Embeddings and Universal Pointsets , 2011, Algorithmica.

[5]  Mikio Kano,et al.  Semi-balanced Partitions of Two Sets of Points and Embeddings of Rooted Forests , 2005, Int. J. Comput. Geom. Appl..

[6]  Marek Chrobak,et al.  A lower bound on the size of universal sets for planar graphs , 1989, SIGA.

[7]  Mikio Kano,et al.  Straight-Line Embeddings of Two Rooted Trees in the Plane , 1999, Discret. Comput. Geom..

[8]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[9]  Hazel Everett,et al.  Universal Sets of n Points for One-bend Drawings of Planar Graphs with n Vertices , 2010, Discret. Comput. Geom..

[10]  Emilio Di Giacomo,et al.  Drawing Colored Graphs with Constrained Vertex Positions and Few Bends per Edge , 2007, Graph Drawing.

[11]  Emilio Di Giacomo,et al.  Curve-constrained drawings of planar graphs , 2005, Comput. Geom..

[12]  Mikio Kano,et al.  Straight line embeddings of rooted star forests in the plane , 2000, Discret. Appl. Math..

[13]  Emilio Di Giacomo,et al.  k-colored Point-set Embeddability of Outerplanar Graphs , 2008, J. Graph Algorithms Appl..

[14]  Stephane Durocher,et al.  On the Hardness of Point-Set Embeddability - (Extended Abstract) , 2012, WALCOM.

[15]  Therese C. Biedl,et al.  The point-set embeddability problem for plane graphs , 2012, SoCG '12.

[16]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[17]  Micha A. Perles,et al.  The rooted tree embedding problem into points in the plane , 1994, Discret. Comput. Geom..

[18]  R. Pollack,et al.  Embedding a planar triangulation with vertices at specified points , 1991 .

[19]  Emilio Di Giacomo,et al.  Upward straight-line embeddings of directed graphs into point sets , 2010, Comput. Geom..

[20]  Giuseppe Liotta,et al.  Universal point sets for 2-coloured trees , 2012, Inf. Process. Lett..

[21]  Sergio Cabello Planar embeddability of the vertices of a graph using a fixed point set is NP-hard , 2006, J. Graph Algorithms Appl..

[22]  Emilio Di Giacomo,et al.  Drawing colored graphs on colored points , 2007, Theor. Comput. Sci..

[23]  Prosenjit Bose,et al.  On Embedding an Outer-Planar Graph in a Point Set , 1997, GD.

[24]  Emilio Di Giacomo,et al.  Point-set embeddings of trees with given partial drawings , 2009, Comput. Geom..

[25]  Marc Noy,et al.  Bipartite Embeddings of Trees in the Plane , 1996, Graph Drawing.

[26]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[27]  Giuseppe Liotta,et al.  On point-sets that support planar graphs , 2013, Comput. Geom..