CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia

[1]  Resumo Objetivo,et al.  Ovarian hyperstimulation syndrome in a spontaneous singleton pregnancy , 2016, Einstein.

[2]  Lorne Zinman,et al.  Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis , 2014, Nature Neuroscience.

[3]  N. Kedersha,et al.  Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue , 2014, neurogenetics.

[4]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[5]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[6]  Oliver D. King,et al.  Stress granules as crucibles of ALS pathogenesis , 2013, The Journal of cell biology.

[7]  Wim Robberecht,et al.  The changing scene of amyotrophic lateral sclerosis , 2013, Nature Reviews Neuroscience.

[8]  M. Pagano,et al.  A cyclin without cyclin-dependent kinases: cyclin F controls genome stability through ubiquitin-mediated proteolysis. , 2013, Trends in cell biology.

[9]  G. Rouleau,et al.  UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.

[10]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[11]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[12]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[13]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[14]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[15]  C. Weihl Valosin containing protein associated fronto-temporal lobar degeneration: clinical presentation, pathologic features and pathogenesis. , 2011, Current Alzheimer research.

[16]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[17]  B. Oostra,et al.  Loss of Nuclear Activity of the FBXO7 Protein in Patients with Parkinsonian-Pyramidal Syndrome (PARK15) , 2011, PloS one.

[18]  Patrizia Sola,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2011, Neuron.

[19]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[20]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[21]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[22]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[23]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[24]  Martin L. Duennwald,et al.  Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. , 2008, Genes & development.

[25]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[26]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[27]  Tom H. Lindner,et al.  easyLINKAGE: a PERL script for easy and automated two-/multi-point linkage analyses , 2005, Bioinform..

[28]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[29]  Stephen J. Elledge,et al.  SKP1 Connects Cell Cycle Regulators to the Ubiquitin Proteolysis Machinery through a Novel Motif, the F-Box , 1996, Cell.

[30]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[31]  G. Lathrop,et al.  Easy calculations of lod scores and genetic risks on small computers. , 1984, American journal of human genetics.

[32]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[33]  R. Bandopadhyay,et al.  Pathogenesis of Parkinson's disease: emerging role of molecular chaperones. , 2010, Trends in molecular medicine.

[34]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[35]  E. Bennett,et al.  Application and analysis of the GFPu family of ubiquitin-proteasome system reporters. , 2005, Methods in enzymology.

[36]  R. Kopito,et al.  Impairment of the ubiquitin-proteasome system by protein aggregation. , 2001, Science.