Antibody Recognition of Different Staphylococcus aureus Wall Teichoic Acid Glycoforms
暂无分享,去创建一个
N. V. van Sorge | A. Molinaro | M. V. van Raaij | J. Codée | R. Marchetti | C. D. de Haas | A. Hendriks | F. Berni | Pablo Soriano-Maldonado | S. Ali | Cristina Di Carluccio | A. R. Temming | A. Silipo
[1] H. Overkleeft,et al. Epitope Recognition of a Monoclonal Antibody Raised against a Synthetic Glycerol Phosphate Based Teichoic Acid , 2021, ACS chemical biology.
[2] D. Filippov,et al. (Automated) Synthesis of Well‐defined Staphylococcus Aureus Wall Teichoic Acid Fragments , 2021, Chemistry.
[3] A. Molinaro,et al. Investigation of protein-ligand complexes by ligand-based NMR methods. , 2021, Carbohydrate research.
[4] H. Overkleeft,et al. Generation of glucosylated sn-1-glycerolphosphate teichoic acids: glycerol stereochemistry affects synthesis and antibody interaction , 2020, RSC Chemical Biology.
[5] N. V. van Sorge,et al. Wall Teichoic Acid in Staphylococcus aureus Host Interaction. , 2020, Trends in microbiology.
[6] N. V. van Sorge,et al. Do not discard Staphylococcus aureus WTA as a vaccine antigen , 2019, Nature.
[7] M. Otto,et al. Fighting Staphylococcus aureus Biofilms with Monoclonal Antibodies. , 2019, Trends in microbiology.
[8] P. Talaga,et al. Glycosylation of Staphylococcus aureus cell wall teichoic acid is influenced by environmental conditions , 2019, Scientific Reports.
[9] C. Wolz,et al. Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity , 2018, Nature.
[10] P. Lupardus,et al. Structural investigation of human S. aureus-targeting antibodies that bind wall teichoic acid , 2018, mAbs.
[11] S. Foster,et al. Human skin commensals augment Staphylococcus aureus pathogenesis , 2018, Nature Microbiology.
[12] A. McEwan,et al. Discovery of glycerol phosphate modification on streptococcal rhamnose polysaccharides , 2019, Nature Chemical Biology.
[13] D. Filippov,et al. Streamlined Synthesis and Evaluation of Teichoic Acid Fragments , 2018, Chemistry.
[14] M. Ouellette,et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. , 2017, The Lancet. Infectious diseases.
[15] C. Weidenmaier,et al. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota , 2017, Nature Reviews Microbiology.
[16] K. Kurokawa,et al. The staphylococcal surface-glycopolymer wall teichoic acid (WTA) is crucial for complement activation and immunological defense against Staphylococcus aureus infection. , 2016, Immunobiology.
[17] P. S. Andersen,et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus , 2015, Nature.
[18] A. Peschel,et al. Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. , 2014, International journal of medical microbiology : IJMM.
[19] S. Walker,et al. Wall teichoic acids of gram-positive bacteria. , 2013, Annual review of microbiology.
[20] K. Kurokawa,et al. Intradermal Immunization with Wall Teichoic Acid (WTA) Elicits and Augments an Anti-WTA IgG Response that Protects Mice from Methicillin-Resistant Staphylococcus aureus Infection Independent of Mannose-Binding Lectin Status , 2013, PloS one.
[21] Jennifer Campbell,et al. Wall Teichoic Acid Function, Biosynthesis, and Inhibition , 2009, Chembiochem : a European journal of chemical biology.
[22] C. Weidenmaier,et al. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions , 2008, Nature Reviews Microbiology.
[23] H. Kalbacher,et al. Inactivation of the dlt Operon inStaphylococcus aureus Confers Sensitivity to Defensins, Protegrins, and Other Antimicrobial Peptides* , 1999, The Journal of Biological Chemistry.
[24] J. Wells,et al. Gram-Positive Bacteria , 1997, Biotechnology Intelligence Unit.