Identifying RNA Modifications by Direct RNA Sequencing Reveals Complexity of Epitranscriptomic Dynamics in Rice.

[1]  Yun-Gui Yang,et al.  Characteristics of N6-methyladenosine modification during sexual reproduction of Chlamydomonas reinhardtii , 2022, bioRxiv.

[2]  Chuan He,et al.  RNA demethylation increases the yield and biomass of rice and potato plants in field trials , 2021, Nature Biotechnology.

[3]  Wenming Zhao,et al.  The Genome Sequence Archive Family: Toward Explosive Data Growth and Diverse Data Types , 2021, bioRxiv.

[4]  G. Qin,et al.  N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner , 2021, Genome Biology.

[5]  S. Zhang,et al.  Roles of N6-Methyladenosine (m6A) in Stem Cell Fate Decisions and Early Embryonic Development in Mammals , 2020, Frontiers in Cell and Developmental Biology.

[6]  Zhongying Zhao,et al.  New insights into Arabidopsis transcriptome complexity revealed by direct sequencing of native RNAs , 2020, Nucleic acids research.

[7]  B. Tian,et al.  Widespread transcript shortening through alternative polyadenylation in secretory cell differentiation , 2020, Nature Communications.

[8]  Chun-Xiao Song,et al.  Mapping the epigenetic modifications of DNA and RNA , 2020, Protein & Cell.

[9]  Geo Pertea,et al.  GFF Utilities: GffRead and GffCompare , 2020, F1000Research.

[10]  Lijia Ma,et al.  A metabolic labeling method detects m6A transcriptome-wide at single base resolution , 2020, Nature Chemical Biology.

[11]  G. Jia,et al.  Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine , 2020, Nature Chemical Biology.

[12]  K. Chong,et al.  OsNSUN2-Mediated 5-Methylcytosine mRNA Modification Enhances Rice Adaptation to High Temperature. , 2020, Developmental cell.

[13]  Zhongying Zhao,et al.  Direct full-length RNA sequencing reveals unexpected transcriptome complexity during Caenorhabditis elegans development , 2020, Genome research.

[14]  Matthew T. Parker,et al.  Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification , 2020, eLife.

[15]  Angela N. Brooks,et al.  Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns , 2018, Nature Communications.

[16]  Zhe Liang,et al.  Epigenetic Modifications of mRNA and DNA in Plants. , 2019, Molecular plant.

[17]  Daniel A. Lorenz,et al.  Direct RNA sequencing enables m6A detection in endogenous transcript isoforms at base-specific resolution , 2019, RNA.

[18]  Guangchuang Yu,et al.  RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms , 2019, PeerJ Prepr..

[19]  Chuang Ma,et al.  Evolution of the RNA N6-Methyladenosine Methylome Mediated by Genomic Duplication1[OPEN] , 2019, Plant Physiology.

[20]  Steven L Salzberg,et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype , 2019, Nature Biotechnology.

[21]  Schraga Schwartz,et al.  Deciphering the “m6A Code” via Antibody-Independent Quantitative Profiling , 2019, Cell.

[22]  J. Hadfield,et al.  RNA sequencing: the teenage years , 2019, Nature Reviews Genetics.

[23]  Geo Pertea,et al.  Transcriptome assembly from long-read RNA-seq alignments with StringTie2 , 2019, Genome Biology.

[24]  Xiaojun Nie,et al.  N6‐methyladenosine regulatory machinery in plants: composition, function and evolution , 2019, Plant biotechnology journal.

[25]  Jian-You Liao,et al.  The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice , 2019, PLoS genetics.

[26]  James Taylor,et al.  The full-length transcriptome of C. elegans using direct RNA sequencing , 2019, bioRxiv.

[27]  Hui Shen,et al.  m6A Regulates Neurogenesis and Neuronal Development by Modulating Histone Methyltransferase Ezh2 , 2019, Genom. Proteom. Bioinform..

[28]  Zhang Zhang,et al.  Single-base mapping of m6A by an antibody-independent method , 2019, Science Advances.

[29]  C. Ghigna,et al.  A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing , 2019, eLife.

[30]  A. Pasquinelli,et al.  Tales of Detailed Poly(A) Tails. , 2019, Trends in cell biology.

[31]  Schraga Schwartz,et al.  Accurate detection of m6A RNA modifications in native RNA sequences , 2019, Nature Communications.

[32]  Angela N. Brooks,et al.  Nanopore native RNA sequencing of a human poly(A) transcriptome , 2018, bioRxiv.

[33]  Zhike Lu,et al.  The m6A Reader ECT2 Controls Trichome Morphology by Affecting mRNA Stability in Arabidopsis[OPEN] , 2018, Plant Cell.

[34]  Wei Li,et al.  3′ UTR lengthening as a novel mechanism in regulating cellular senescence , 2018, Genome research.

[35]  L. McMillan,et al.  FMLRC: Hybrid long read error correction using an FM-index , 2018, BMC Bioinformatics.

[36]  Wouter De Coster,et al.  NanoPack: visualizing and processing long-read sequencing data , 2018, bioRxiv.

[37]  Jian‐Kang Zhu,et al.  UTR-Dependent Control of Gene Expression in Plants. , 2017, Trends in plant science.

[38]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[39]  Daniel R. Garalde,et al.  Highly parallel direct RNA sequencing on an array of nanopores , 2016, Nature Methods.

[40]  L. Vardy,et al.  5-Methylcytosine RNA Methylation in Arabidopsis Thaliana. , 2017, Molecular plant.

[41]  Chengqi Yi,et al.  Epitranscriptomics: Toward A Better Understanding of RNA Modifications , 2017, Genom. Proteom. Bioinform..

[42]  Anthony O. Olarerin-George,et al.  MetaPlotR: a Perl/R pipeline for plotting metagenes of nucleotide modifications and other transcriptomic sites , 2017, Bioinform..

[43]  Zhou Du,et al.  agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update , 2017, Nucleic Acids Res..

[44]  Ji Eun Lee,et al.  De novo Identification of DNA Modifications Enabled by Genome-Guided Nanopore Signal Processing , 2017, bioRxiv.

[45]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[46]  Yuri Motorin,et al.  Detecting RNA modifications in the epitranscriptome: predict and validate , 2017, Nature Reviews Genetics.

[47]  Jun Li,et al.  Transcriptome-Wide Mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and Noncoding RNAs , 2017, Plant Cell.

[48]  M. Yanovsky,et al.  Transcriptional and post-transcriptional control of the plant circadian gene regulatory network. , 2017, Biochimica et biophysica acta. Gene regulatory mechanisms.

[49]  Hugh E. Olsen,et al.  The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community , 2016, Genome Biology.

[50]  Yan Li,et al.  SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation , 2016, PloS one.

[51]  Zhe Liang,et al.  N(6)-Methyladenosine RNA Modification Regulates Shoot Stem Cell Fate in Arabidopsis. , 2016, Developmental cell.

[52]  W. Gilbert,et al.  Messenger RNA modifications: Form, distribution, and function , 2016, Science.

[53]  T. Preiss,et al.  The emerging epitranscriptomics of long noncoding RNAs. , 2016, Biochimica et biophysica acta.

[54]  Arne Klungland,et al.  A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation , 2015, Genes & development.

[55]  A. Zahler,et al.  Coordinated tissue-specific regulation of adjacent alternative 3′ splice sites in C. elegans , 2015, Genome research.

[56]  Christopher E. Mason,et al.  Single-nucleotide resolution mapping of m6A and m6Am throughout the transcriptome , 2015, Nature Methods.

[57]  Tao Pan,et al.  High-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. , 2015, Angewandte Chemie.

[58]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[59]  A. Kornblihtt,et al.  Let there be light: Regulation of gene expression in plants , 2014, RNA biology.

[60]  Songnian Hu,et al.  Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification , 2014, RNA biology.

[61]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[62]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[63]  Schraga Schwartz,et al.  High-Resolution Mapping Reveals a Conserved, Widespread, Dynamic mRNA Methylation Program in Yeast Meiosis , 2013, Cell.

[64]  S. Dietmann,et al.  Characterizing 5-methylcytosine in the mammalian epitranscriptome , 2013, Genome Biology.

[65]  Jernej Ule,et al.  NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs , 2013, Cell reports.

[66]  Schraga Schwartz,et al.  Transcriptome-Wide Mapping of 5-methylcytidine RNA Modifications in Bacteria, Archaea, and Yeast Reveals m5C within Archaeal mRNAs , 2013, PLoS genetics.

[67]  Bradley R. Cairns,et al.  Identification of direct targets and modified bases of RNA cytosine methyltransferases , 2013, Nature Biotechnology.

[68]  D. Schwartz,et al.  Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data , 2013, Rice.

[69]  T. Preiss,et al.  Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA , 2012, Nucleic acids research.

[70]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[71]  Frank Lyko,et al.  5-methylcytosine in RNA: detection, enzymatic formation and biological functions , 2009, Nucleic acids research.

[72]  B. Menand,et al.  Post-transcriptional Regulation of Gene Expression in Plants during Abiotic Stress , 2009, International journal of molecular sciences.

[73]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[74]  Frank Lyko,et al.  RNA cytosine methylation analysis by bisulfite sequencing , 2008, Nucleic acids research.

[75]  John A. Hamilton,et al.  The TIGR Rice Genome Annotation Resource: improvements and new features , 2006, Nucleic Acids Res..

[76]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[77]  R. Jorgensen,et al.  Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[78]  F. Davis,et al.  Ribonucleic acids from yeast which contain a fifth nucleotide. , 1957, The Journal of biological chemistry.