Metabolic Properties, Functional Characteristics, and Practical Application of Streptococcus thermophilus

[1]  S. S. Alkafaas,et al.  Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens , 2023, Antibiotics.

[2]  X. Wang,et al.  Milk fermentation by monocultures or co-cultures of Streptococcus thermophilus strains , 2022, Frontiers in Bioengineering and Biotechnology.

[3]  Hengxian Qu,et al.  Effect of amino acids on free exopolysaccharide biosynthesis by Streptococcus thermophilus 937 in chemically defined medium. , 2022, Journal of dairy science.

[4]  L. Miclo,et al.  In Vitro Anti-Inflammatory Activity of Peptides Obtained by Tryptic Shaving of Surface Proteins of Streptococcus thermophilus LMD-9 , 2022, Foods.

[5]  M. Taga,et al.  A Salvaging Strategy Enables Stable Metabolite Provisioning among Free-Living Bacteria , 2021, bioRxiv.

[6]  Jianxin Liu,et al.  Characterization of an exopolysaccharide (EPS-3A) produced by Streptococcus thermophilus ZJUIDS-2-01 isolated from traditional yak yogurt. , 2021, International journal of biological macromolecules.

[7]  Haben Fesseha,et al.  Isolation and Identification of Lactic Acid Bacteria from Cow Milk and Milk Products , 2021, TheScientificWorldJournal.

[8]  Z. Kerényi,et al.  Relationship between total cell counts and exopolysaccharide production of Streptococcus thermophilus T9 in reconstituted skim milk , 2021 .

[9]  Wei‐Jen Chen,et al.  Amelioration of 5-fluorouracil-induced intestinal mucositis by Streptococcus thermophilus ST4 in a mouse model , 2021, PloS one.

[10]  P. Pittia,et al.  Lactic Acid Bacteria Exopolysaccharides Producers: A Sustainable Tool for Functional Foods , 2021, Foods.

[11]  Weitao Geng,et al.  Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry , 2021, Frontiers in Bioengineering and Biotechnology.

[12]  Dan Li,et al.  Potato starch modified by Streptococcus thermophilus GtfB enzyme has low viscoelastic and slowly digestible properties. , 2021, International journal of biological macromolecules.

[13]  L. Ai,et al.  High-efficiency transformation of Streptococcus thermophilus using electroporation. , 2021, The Journal of the Science of Food and Agriculture.

[14]  H. Berthoud,et al.  Evaluation of a new culture medium for the enumeration and isolation of Streptococcus salivarius subsp. thermophilus from cheese. , 2021, Food microbiology.

[15]  Banu Kaskatepe,et al.  Microbial exopolysaccharide production of Streptococcus thermophilus and its antiquorum sensing activity , 2021, Archives of Microbiology.

[16]  S. Moineau,et al.  Ectopic Spacer Acquisition in Streptococcus thermophilus CRISPR3 Array , 2021, Microorganisms.

[17]  H. Malínská,et al.  In Vivo Bioavailability of Selenium in Selenium-Enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS Rats , 2021, Antioxidants.

[18]  L. Ai,et al.  Structural characterisation of EPS of Streptococcus thermophilus S-3 and its application in milk fermentation. , 2021, International journal of biological macromolecules.

[19]  T. Hu,et al.  Analysis of the proteolytic system of Streptococcus thermophilus strains CS5, CS9, CS18 and CS20 , 2021, International Dairy Journal.

[20]  N. Shah,et al.  Lactic acid produced by Streptococcus thermophilus activated glutamate decarboxylase (GadA) in Lactobacillus brevis NPS-QW 145 to improve γ-amino butyric acid production during soymilk fermentation , 2021 .

[21]  P. Show,et al.  Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. , 2021, Food chemistry.

[22]  M. Kojić,et al.  Natural bacterial isolates as an inexhaustible source of new bacteriocins , 2021, Applied Microbiology and Biotechnology.

[23]  Dong‐mei Liu,et al.  Streptococcus thermophiles DMST-H2 Promotes Recovery in Mice with Antibiotic-Associated Diarrhea , 2020, Microorganisms.

[24]  Y. Jung,et al.  Safety assessment of Streptococcus thermophilus IDCC 2201 used for product manufacturing in Korea , 2020, Food science & nutrition.

[25]  M. Kojić,et al.  Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. , 2020, Food research international.

[26]  F. He,et al.  Anti‐adipogenesis and metabolism‐regulating effects of heat‐inactivated Streptococcus thermophilus MN‐ZLW‐002 , 2020, Letters in applied microbiology.

[27]  Yijie Zhang,et al.  Streptococcus thermophilus Attenuates Inflammation in Septic Mice Mediated by Gut Microbiota , 2020, Frontiers in Microbiology.

[28]  Jun Yu,et al.  Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase. , 2020, Gastroenterology.

[29]  S. Nejentsev,et al.  Efficient genome editing in pathogenic mycobacteria using Streptococcus thermophilus CRISPR1-Cas9. , 2020, Tuberculosis.

[30]  T. Guo,et al.  Identification and characterization of a moonlighting protein-enolase for surface display in Streptococcus thermophilus , 2020, Microbial Cell Factories.

[31]  Y. Hwang,et al.  Hepatoprotective Effects of Streptococcus thermophilus LM1012 in Mice Exposed to Air Pollutants. , 2020, Journal of medicinal food.

[32]  Hideki Takahashi,et al.  Exopolysaccharides From Streptococcus thermophilus ST538 Modulate the Antiviral Innate Immune Response in Porcine Intestinal Epitheliocytes , 2020, Frontiers in Microbiology.

[33]  G. Tenea,et al.  Probiotic Potential and Technological Properties of Bacteriocinogenic Lactococcus lactis Subsp. Lactis UTNGt28 from a Native Amazonian Fruit as a Yogurt Starter Culture , 2020, Microorganisms.

[34]  M. Gatti,et al.  Safety and technological application of autochthonous Streptococcus thermophilus cultures in the buffalo Mozzarella cheese. , 2020, Food microbiology.

[35]  S. Balaji,et al.  Probiotic Validation of a Non-native, Thermostable, Phytase-Producing Bacterium: Streptococcus thermophilus , 2020, Current Microbiology.

[36]  E. Ver Loren van Themaat,et al.  A cell wall‐associated polysaccharide is required for bacteriophage adsorption to the Streptococcus thermophilus cell surface , 2020, Molecular microbiology.

[37]  V. Apostolopoulos,et al.  Streptococcusthermophilus ST285 Alters Pro-Inflammatory to Anti-Inflammatory Cytokine Secretion against Multiple Sclerosis Peptide in Mice , 2020, Brain sciences.

[38]  Chen Bai,et al.  Use of Streptococcus thermophilus for the in situ production of γ-aminobutyric acid-enriched fermented milk. , 2020, Journal of dairy science.

[39]  M. Fan,et al.  First Insight into the Probiotic Properties of Ten Streptococcus thermophilus Strains Based on In Vitro Conditions , 2019, Current Microbiology.

[40]  G. Valdez,et al.  Physicochemical and antioxidant properties of a gastroprotective exopolysaccharide produced by Streptococcus thermophilus CRL1190 , 2019, Food Hydrocolloids.

[41]  Hyun Jeong Lee,et al.  Probiotic and Triticale Silage Fermentation Potential of Pediococcus pentosaceus and Lactobacillus brevis and Their Impacts on Pathogenic Bacteria , 2019, Microorganisms.

[42]  S. Krupanidhi,et al.  Bioactive molecules of probiotic bacteria and their mechanism of action: a review , 2019, 3 Biotech.

[43]  L. Ai,et al.  Genomic and phenotypic analyses of exopolysaccharide biosynthesis in Streptococcus thermophilus S-3. , 2019, Journal of dairy science.

[44]  N. Zhang,et al.  Characterization of a Panel of Strong Constitutive Promoters from Streptococcus thermophilus for Fine-Tuning Gene Expression. , 2019, ACS synthetic biology.

[45]  C. De Simone The Unregulated Probiotic Market , 2019, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[46]  Lei Shi,et al.  Antibiotic Resistance of Lactobacillus spp. and Streptococcus thermophilus Isolated from Chinese Fermented Milk Products. , 2019, Foodborne pathogens and disease.

[47]  F. Ren,et al.  A Role of Exopolysaccharide Produced by Streptococcus thermophilus in the Intestinal Inflammation and Mucosal Barrier in Caco-2 Monolayer and Dextran Sulphate Sodium-Induced Experimental Murine Colitis , 2019, Molecules.

[48]  B. Wróblewska,et al.  Yogurt starter cultures of Streptococcus thermophilus and Lactobacillus bulgaricus ameliorate symptoms and modulate the immune response in a mouse model of dextran sulfate sodium-induced colitis. , 2019, Journal of dairy science.

[49]  H. Lai,et al.  Probiotics, prebiotics and amelioration of diseases , 2019, Journal of Biomedical Science.

[50]  S. Campanaro,et al.  A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the Streptococcus thermophilus M17PTZA496 , 2018, Viruses.

[51]  Weihong Li,et al.  Purification, Preliminary Structure and Antitumor Activity of Exopolysaccharide Produced by Streptococcus thermophilus CH9 , 2018, Molecules.

[52]  Jianxin Jiang,et al.  Effective lactic acid production from waste paper using Streptococcus thermophilus at low enzyme loading assisted by Gleditsia saponin. , 2018, Carbohydrate polymers.

[53]  V. Apostolopoulos,et al.  Immunomodulatory effects of Streptococcus thermophilus on U937 monocyte cell cultures , 2018, Journal of Functional Foods.

[54]  D. Sinderen,et al.  Biodiversity of Streptococcus thermophilus Phages in Global Dairy Fermentations , 2018, Viruses.

[55]  A. Giacomini,et al.  In vitro Probiotic Potential and Anti-cancer Activity of Newly Isolated Folate-Producing Streptococcus thermophilus Strains , 2018, Front. Microbiol..

[56]  L. Ai,et al.  Exopolysaccharide produced by Streptococcus thermophiles S-3: Molecular, partial structural and rheological properties. , 2018, Carbohydrate polymers.

[57]  A. Coffey,et al.  Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits. , 2018, Annual review of food science and technology.

[58]  A. Verma,et al.  Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets , 2018, PloS one.

[59]  M. Zago,et al.  Folates biosynthesis by Streptococcus thermophilus during growth in milk. , 2018, Food microbiology.

[60]  L. Ai,et al.  Characterization of a yogurt-quality improving exopolysaccharide from Streptococcus thermophilus AR333 , 2017, Food Hydrocolloids.

[61]  S. Blanquet-Diot,et al.  Streptococcus thermophilus: From yogurt starter to a new promising probiotic candidate? , 2017 .

[62]  Junling Shi,et al.  Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk , 2017 .

[63]  X. Rui,et al.  Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. , 2017, Carbohydrate polymers.

[64]  M. Sauer,et al.  The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production. , 2017, Trends in biotechnology.

[65]  Sri Lakshmi Ramya Krishna Kanamarlapudi,et al.  Characterization of Exopolysaccharide Produced by Streptococcus thermophilus CC30 , 2017, BioMed research international.

[66]  Zhaoxin Lu,et al.  Optimization of a cryoprotective medium to increase the viability of freeze-dried Streptococcus thermophilus by response surface methodology , 2017 .

[67]  A. Pihlanto,et al.  Health benefits of fermented foods: microbiota and beyond. , 2017, Current opinion in biotechnology.

[68]  T. Hu,et al.  New advances in exopolysaccharides production of Streptococcus thermophilus , 2017, Archives of Microbiology.

[69]  T. Hu,et al.  New Insights into Various Production Characteristics of Streptococcus thermophilus Strains , 2016, International journal of molecular sciences.

[70]  C. Bergamini,et al.  Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci , 2016, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[71]  A. Dary,et al.  Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. , 2016, Food microbiology.

[72]  E. Roux,et al.  Implication of sortase-dependent proteins of Streptococcus thermophilus in adhesion to human intestinal epithelial cell lines and bile salt tolerance , 2016, Applied Microbiology and Biotechnology.

[73]  W. D. de Vos,et al.  A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods , 2015, Microbial Cell Factories.

[74]  E. Daliri,et al.  New perspectives on probiotics in health and disease , 2015 .

[75]  H. Szajewska,et al.  Yogurt for treating antibiotic-associated diarrhea: Systematic review and meta-analysis. , 2015, Nutrition.

[76]  N. Shah,et al.  Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275. , 2014, Food chemistry.

[77]  H. Tun,et al.  Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275 , 2014, Scientific Reports.

[78]  E. Smid,et al.  Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. , 2014, International journal of food microbiology.

[79]  A. Riazi,et al.  Effect of prebiotic carbohydrates on growth, bile survival and cholesterol uptake abilities of dairy-related bacteria. , 2014, Journal of the science of food and agriculture.

[80]  A. Goyal,et al.  Novel dextran from Pediococcus pentosaceus CRAG3 isolated from fermented cucumber with anti-cancer properties. , 2013, International Journal of Biological Macromolecules.

[81]  F. Rossi,et al.  Diversity of Streptococcus thermophilus in bacteriocin production; inhibitory spectrum and occurrence of thermophilin genes. , 2013, Food microbiology.

[82]  M. Hernández,et al.  In vivo study of the survival of Lactobacillus delbruecki subsp. bulgaricus CECT 4005T and Streptococcus thermophilus CECT 801 by DVC-FISH after consumption of fermented milk. , 2012, Journal of food science.

[83]  Martin Wu,et al.  Lactic acid production by Streptococcus thermophilus alters Clostridium difficile infection and in vitro Toxin A production , 2012, Gut microbes.

[84]  M. Danquah,et al.  Carbohydrate utilization affects Lactobacillus delbrueckii subsp. lactis 313 cell-enveloped-associated proteinase production , 2012, Biotechnology and Bioprocess Engineering.

[85]  R. Kumar,et al.  Cholesterol-Lowering Probiotics as Potential Biotherapeutics for Metabolic Diseases , 2012, Experimental diabetes research.

[86]  D. Chevret,et al.  Carbohydrate Metabolism Is Essential for the Colonization of Streptococcus thermophilus in the Digestive Tract of Gnotobiotic Rats , 2011, PloS one.

[87]  V. Ladero,et al.  Isolation of an exopolysaccharide-producing Streptococcus thermophilus from Algerian raw cow milk , 2011, European Food Research and Technology.

[88]  C. Rodríguez,et al.  Therapeutic effect of Streptococcus thermophilus CRL 1190-fermented milk on chronic gastritis. , 2010, World journal of gastroenterology.

[89]  Rameshwar Singh,et al.  Streptococcus thermophilus strains: Multifunctional lactic acid bacteria , 2010 .

[90]  S. Kapila,et al.  Probiotic properties of folate producing Streptococcus thermophilus strains , 2010 .

[91]  C. Rodríguez,et al.  Prevention of chronic gastritis by fermented milks made with exopolysaccharide-producing Streptococcus thermophilus strains. , 2009, Journal of dairy science.

[92]  E. J. Perea,et al.  Yogures frescos frente a pasteurizados: estudio comparativo de sus efectos sobre los parámetros microbiológicos, inmunológicos y el bienestar gastrointestinal , 2008 .

[93]  Tadashi Sato,et al.  Preventive Effect of Streptococcus thermophilus YIT 2001 on Dextran Sulfate Sodium-Induced Colitis in Mice , 2008, Bioscience, biotechnology, and biochemistry.

[94]  A. Benini,et al.  Relationship between number of bacteria and their probiotic effects , 2008 .

[95]  A. Clark,et al.  Does eating yogurt prevent antibiotic-associated diarrhoea? A placebo-controlled randomised controlled trial in general practice. , 2007, The British journal of general practice : the journal of the Royal College of General Practitioners.

[96]  N. Shah,et al.  Effects of exopolysaccharide-producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yoghurt , 2007 .

[97]  F. Manguso,et al.  Probiotics for treatment of acute diarrhoea in children: randomised clinical trial of five different preparations , 2007, BMJ : British Medical Journal.

[98]  Takashi Sasaki,et al.  Isolation and characterization of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus from plants in Bulgaria. , 2007, FEMS microbiology letters.

[99]  M. Kojić,et al.  Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. , 2006, International journal of food microbiology.

[100]  A. Senok,et al.  Probiotics: facts and myths. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[101]  S. Kishino,et al.  Production of conjugated fatty acids by lactic acid bacteria. , 2005, Journal of bioscience and bioengineering.

[102]  Laetitia Fontaine,et al.  New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. , 2005, FEMS microbiology reviews.

[103]  A. Goffeau,et al.  Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus , 2004, Nature Biotechnology.

[104]  R. Yolken,et al.  Long-term consumption of infant formulas containing live probiotic bacteria : tolerance and safety 1 – 3 , 2004 .

[105]  Masahiko Ito,et al.  Antioxidative effects of lactic acid bacteria on the colonic mucosa of iron-overloaded mice. , 2003, Journal of agricultural and food chemistry.

[106]  I. Bowler,et al.  Native valve endocarditis due to Streptococcus vestibularis and Streptococcus oralis. , 2002, The Journal of infection.

[107]  D. Sadoun,et al.  Survie des ferments du yaourt dans le tube digestif du lapin , 2002 .

[108]  M. Terahara,et al.  Prevention by Lactic Acid Bacteria of the Oxidation of Human LDL , 2001, Bioscience, biotechnology, and biochemistry.

[109]  A Ott,et al.  Origin of acetaldehyde during milk fermentation using (13)C-labeled precursors. , 2000, Journal of agricultural and food chemistry.

[110]  R. Korpela,et al.  Lactose Intolerance , 2000, Journal of the American College of Nutrition.

[111]  S. Gorbach Lactic acid bacteria and human health. , 1990, Annals of medicine.

[112]  P. Pochart,et al.  Viable starter culture, beta-galactosidase activity, and lactose in duodenum after yogurt ingestion in lactase-deficient humans. , 1989, The American journal of clinical nutrition.

[113]  S. Miller,et al.  Bacteremia with Streptococcus bovis and Streptococcus salivarius: clinical correlates of more accurate identification of isolates , 1989, Journal of clinical microbiology.