Molecular interaction of fibrinogen with zeolite nanoparticles

[1]  A. Saboury,et al.  Biomolecular Corona Dictates Aβ Fibrillation Process. , 2018, ACS chemical neuroscience.

[2]  G. Caracciolo,et al.  Disease-related metabolites affect protein-nanoparticle interactions. , 2018, Nanoscale.

[3]  Ingmar Schoen,et al.  Probing fibronectin conformation on a protein corona layer around nanoparticles. , 2018, Nanoscale.

[4]  A. Amani,et al.  Promising Antibacterial Effects of Silver Nanoparticle-Loaded Tea Tree Oil Nanoemulsion: a Synergistic Combination Against Resistance Threat , 2017, AAPS PharmSciTech.

[5]  M. Mahmoudi,et al.  Advances in Alzheimer's Diagnosis and Therapy: The Implications of Nanotechnology. , 2017, Trends in biotechnology.

[6]  S. Mintova,et al.  Zeolite Nanoparticles Inhibit Aβ-Fibrinogen Interaction and Formation of a Consequent Abnormal Structural Clot. , 2016, ACS applied materials & interfaces.

[7]  Ophir Vermesh,et al.  Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. , 2016, Nanomedicine : nanotechnology, biology, and medicine.

[8]  S. Kharrazi,et al.  Harnessing the Cancer Radiation Therapy by Lanthanide-Doped Zinc Oxide Based Theranostic Nanoparticles. , 2016, ACS applied materials & interfaces.

[9]  M. Ghavami,et al.  External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. , 2015, Colloids and surfaces. B, Biointerfaces.

[10]  S. Mintova,et al.  Zeolite Nanoparticles for Selective Sorption of Plasma Proteins , 2015, Scientific Reports.

[11]  M. Mahmoudi,et al.  Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide. , 2015, Nanoscale.

[12]  S. Mintova,et al.  EMT-type zeolite nanocrystals synthesized from rice husk , 2015 .

[13]  M. Mahmoudi,et al.  Hyperthermia-induced protein corona improves the therapeutic effects of zinc ferrite spinel-graphene sheets against cancer , 2014 .

[14]  Morteza Mahmoudi,et al.  Personalized protein coronas: a "key" factor at the nanobiointerface. , 2014, Biomaterials science.

[15]  Darren J. Martin,et al.  Cryptic epitopes of albumin determine mononuclear phagocyte system clearance of nanomaterials. , 2014, ACS nano.

[16]  Morteza Mahmoudi,et al.  Variation of protein corona composition of gold nanoparticles following plasmonic heating. , 2014, Nano letters.

[17]  Stefan Tenzer,et al.  Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. , 2013, Nature nanotechnology.

[18]  Jinhong Gao,et al.  Exploring and exploiting the synergy of non-covalent interactions on the surface of gold nanoparticles for fluorescent turn-on sensing of bacterial lipopolysaccharide. , 2013, Nanoscale.

[19]  Changyou Gao,et al.  Molecular interactions of different size AuNP-COOH nanoparticles with human fibrinogen. , 2013, Nanoscale.

[20]  Raimo Hartmann,et al.  Temperature: the "ignored" factor at the NanoBio interface. , 2013, ACS nano.

[21]  S. Mintova,et al.  Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions , 2013 .

[22]  M. Mahmoudi,et al.  Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles. , 2013, Nanoscale.

[23]  S. Krol,et al.  Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. , 2013, Chemical reviews.

[24]  A. Tavolaro,et al.  Hydrothermal synthesis of zeolite composite membranes and crystals as potential vectors for drug-delivering biomaterials , 2013 .

[25]  R. Ramírez-Bon,et al.  Synthesis and properties of crystalline silver nanoparticles supported in natural zeolite chabazite , 2012 .

[26]  Morteza Mahmoudi,et al.  Antibacterial properties of nanoparticles. , 2012, Trends in biotechnology.

[27]  Rodney F. Minchin,et al.  Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. , 2012, ACS nano.

[28]  Christine K Payne,et al.  Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. , 2012, The journal of physical chemistry. B.

[29]  Warren C W Chan,et al.  Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. , 2012, Chemical Society reviews.

[30]  R. Tang,et al.  Synthesis and fluorescence properties of Tb(III) complex with a novel β-diketone ligand as well as spectroscopic studies on the interaction between Tb(III) complex and bovine serum albumin , 2012 .

[31]  Kanlaya Prapainop,et al.  A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins. , 2012, Journal of the American Chemical Society.

[32]  Daniel Chateigner,et al.  Capturing Ultrasmall EMT Zeolite from Template-Free Systems , 2012, Science.

[33]  Rutao Liu,et al.  Interaction of sodium benzoate with trypsin by spectroscopic techniques. , 2011, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[34]  Guowen Zhang,et al.  Fluorescence spectrometric studies on the binding of puerarin to human serum albumin using warfarin, ibuprofen and digitoxin as site markers with the aid of chemometrics , 2011 .

[35]  Morteza Mahmoudi,et al.  Engineered nanoparticles for biomolecular imaging. , 2011, Nanoscale.

[36]  M. Mahmoudi,et al.  Protein-nanoparticle interactions: opportunities and challenges. , 2011, Chemical reviews.

[37]  Morteza Mahmoudi,et al.  Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. , 2011, Nanoscale.

[38]  Iseult Lynch,et al.  What the cell "sees" in bionanoscience. , 2010, Journal of the American Chemical Society.

[39]  Jack F Douglas,et al.  Interaction of gold nanoparticles with common human blood proteins. , 2010, ACS nano.

[40]  Wolfgang J Parak,et al.  A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. , 2009, Nature nanotechnology.

[41]  Parag Aggarwal,et al.  Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. , 2009, Advanced drug delivery reviews.

[42]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[43]  S. Mintova,et al.  Discrete MnAlPO-5 nanocrystals synthesized by an ionothermal approach. , 2009, Chemical communications.

[44]  S. Ahmadian,et al.  Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. , 2008, Acta biochimica et biophysica Sinica.

[45]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[46]  Kenneth A. Dawson,et al.  Protein–Nanoparticle Interactions , 2008, Nano-Enabled Medical Applications.

[47]  Yalin Tang,et al.  Investigation on the interaction between a heterocyclic aminal derivative, SBDC, and human serum albumin. , 2008, Colloids and surfaces. B, Biointerfaces.

[48]  Sara Linse,et al.  Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles , 2007, Proceedings of the National Academy of Sciences.

[49]  David Farrar,et al.  Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. , 2006, Journal of the American Chemical Society.

[50]  David Farrar,et al.  Interpretation of protein adsorption: surface-induced conformational changes. , 2005, Journal of the American Chemical Society.

[51]  J. Åqvist,et al.  Ligand binding affinities from MD simulations. , 2002, Accounts of chemical research.

[52]  J. Gueguen,et al.  Grafting of aliphatic and aromatic probes on rapeseed 2S and 12S proteins: influence on their structural and physicochemical properties. , 1999, Journal of agricultural and food chemistry.

[53]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[54]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[55]  K. Balkus,et al.  Gadolinium zeolite as an oral contrast agent for magnetic resonance imaging , 1995, Journal of magnetic resonance imaging : JMRI.

[56]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[57]  P. Ross,et al.  Thermodynamics of protein association reactions: forces contributing to stability. , 1981, Biochemistry.

[58]  L. Sklar,et al.  Conjugated polyene fatty acids as fluorescent probes: binding to bovine serum albumin. , 1977, Biochemistry.

[59]  Henry S. Slayter,et al.  The Fibrinogen Molecule: Its Size, Shape, and Mode of Polymerization , 1959, The Journal of biophysical and biochemical cytology.

[60]  U. Linne,et al.  Sensing of Alzheimer's Disease and Multiple Sclerosis Using Nano-Bio Interfaces. , 2017, Journal of Alzheimer's Disease.

[61]  Istvan Toth,et al.  Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. , 2011, Nature nanotechnology.

[62]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .