High-speed optical frequency-domain imaging.

We demonstrate high-speed, high-sensitivity, high-resolution optical imaging based on optical frequency-domain interferometry using a rapidly-tuned wavelength-swept laser. We derive and show experimentally that frequency-domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography. A high sensitivity of -110 dB was obtained with a 6 mW source at an axial resolution of 13.5 microm and an A-line rate of 15.7 kHz, representing more than an order-of-magnitude improvement compared with previous OCT and interferometric imaging methods.

[1]  D. Davies,et al.  Optical coherence-domain reflectometry: a new optical evaluation technique. , 1987, Optics letters.

[2]  K. Takada,et al.  New measurement system for fault location in optical waveguide devices based on an interferometric technique. , 1987, Applied optics.

[3]  E. Brinkmeyer,et al.  High-resolution OCDR in dispersive waveguides , 1990 .

[4]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[5]  K. Yukimatsu,et al.  Rayleigh backscattering measurement of single‐mode fibers by low coherence optical time‐domain reflectometer with 14 μm spatial resolution , 1991 .

[6]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[7]  W. Sorin,et al.  A simple intensity noise reduction technique for optical low-coherence reflectometry , 1992, IEEE Photonics Technology Letters.

[8]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[9]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[10]  A. Fercher,et al.  Wavelength-tuning interferometry of intraocular distances. , 1997, Applied optics.

[11]  J. Fujimoto,et al.  In vivo endoscopic optical biopsy with optical coherence tomography. , 1997, Science.

[12]  J. Fujimoto,et al.  Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. , 1997, Optics letters.

[13]  J. Fujimoto,et al.  High-speed phase- and group-delay scanning with a grating-based phase control delay line. , 1997, Optics letters.

[14]  A Rollins,et al.  In vivo video rate optical coherence tomography. , 1998, Optics express.

[15]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[16]  Joseph M. Schmitt,et al.  Optical coherence tomography (OCT): a review , 1999 .

[17]  B. Bouma,et al.  Handbook of Optical Coherence Tomography , 2001 .

[18]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[19]  S. Yun,et al.  High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. , 2003, Optics letters.

[20]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[21]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[22]  E. Halpern,et al.  Quantification of Macrophage Content in Atherosclerotic Plaques by Optical Coherence Tomography , 2003, Circulation.