The Operational Meaning of Min- and Max-Entropy

In this paper, we show that the conditional min-entropy <i>H</i> <sub>min</sub>(<i>A</i> |<i>B</i>) of a bipartite state <i>rhoAB</i> is directly related to the maximum achievable overlap with a maximally entangled state if only local actions on the <i>B</i>-part of <i>rhoAB</i> are allowed. In the special case where <i>A</i> is classical, this overlap corresponds to the probability of guessing <i>A</i> given <i>B</i>. In a similar vein, we connect the conditional max-entropy <i>H</i> <sub>max</sub>(<i>A</i> |<i>B</i>) to the maximum fidelity of <i>rhoAB</i> with a product state that is completely mixed on <i>A</i>. In the case where <i>A</i> is classical, this corresponds to the security of <i>A</i> when used as a secret key in the presence of an adversary holding <i>B</i>. Because min- and max-entropies are known to characterize information-processing tasks such as randomness extraction and state merging, our results establish a direct connection between these tasks and basic operational problems. For example, they imply that the (logarithm of the) probability of guessing <i>A</i> given <i>B</i> is a lower bound on the number of uniform secret bits that can be extracted from <i>A</i> relative to an adversary holding <i>B</i>.

[1]  J. Kowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[2]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[3]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[4]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[5]  Robert König,et al.  Sampling of Min-Entropy Relative to Quantum Knowledge , 2007, IEEE Transactions on Information Theory.

[6]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[7]  I. Devetak,et al.  Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.

[8]  A. Holevo Statistical decision theory for quantum systems , 1973 .

[9]  Christian Schaffner,et al.  Cryptography from noisy storage. , 2007, Physical review letters.

[10]  M. Berta Single-shot Quantum State Merging , 2009, 0912.4495.

[11]  Leonid A. Levin,et al.  Pseudo-random generation from one-way functions , 1989, STOC '89.

[12]  Robert S. Kennedy,et al.  Optimum testing of multiple hypotheses in quantum detection theory , 1975, IEEE Trans. Inf. Theory.

[13]  Christian Schaffner,et al.  Robust cryptography in the noisy-quantum-storage model , 2008, Quantum Inf. Comput..

[14]  P. Hayden,et al.  Security of quantum bit string commitment depends on the information measure. , 2006, Physical review letters.

[15]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[16]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[17]  Nilanjana Datta,et al.  Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.

[18]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[19]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[20]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[21]  A. Karimi,et al.  Master‟s thesis , 2011 .

[22]  Seth Lloyd,et al.  Quantum Coding Theorem from Privacy and Distinguishability , 2008, Open Syst. Inf. Dyn..

[23]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[24]  Ivan Damgård,et al.  A Tight High-Order Entropic Quantum Uncertainty Relation with Applications , 2006, CRYPTO.

[25]  Renato Renner,et al.  The Single-Serving Channel Capacity , 2006, 2006 IEEE International Symposium on Information Theory.