Probabilistic Control of Nonlinear Uncertain Systems

Robust controllers for nonlinear systems with uncertain parameters can be reliably designed using probabilistic methods. In this chapter, a design approach based on the combination of stochastic robustness and dynamic inversion is presented for general systems that have a feedback-linearizable nominal system. The efficacy of this control approach is illustrated through the design of flight control systems for a hypersonic aircraft and a highly nonlinear, complex aircraft model. The proposed stochastic robust nonlinear control explores the direct design of nonlinear flight control logic; therefore the final design accounts for all significant nonlinearities in the aircraft’s high-fidelity simulation model. Monte Carlo simulation is used to estimate the likelihood of closed-loop system instability and violation of performance requirements subject to variations of the probabilistic system parameters. The stochastic robustness cost function is defined in terms of the probabilities that design criteria will not be satisfied. We use randomized algorithms, in particular genetic algorithms, to search the design parameters of the parameterized controller with feedback linearization structure. The design approach is an extension of earlier methods for probabilistic robust control of linear systems. Prior results are reviewed, and the nonlinear approach is presented.

[1]  Roberto Tempo,et al.  Probabilistic robust design with linear quadratic regulators , 2001, Syst. Control. Lett..

[2]  B. Barmish,et al.  On convexity of the probabilistic design problem for quadratic stabilizability , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[3]  C. I. Cruz,et al.  Hypersonic vehicle simulation model: Winged-cone configuration , 1990 .

[4]  Anthony J. Calise,et al.  Adaptive output feedback control of uncertain nonlinear systems using single-hidden-layer neural networks , 2002, IEEE Trans. Neural Networks.

[5]  Dennis S. Bernstein,et al.  A Benchmark Problem for Robust Control Design , 1990, 1990 American Control Conference.

[6]  A. Papoulis Probability y statistics , 1990 .

[7]  Béatrice Escande Nonlinear dynamic inversion and LQ techniques , 1997 .

[8]  A. T. Harding,et al.  Probability and statistics for engineers , 1969 .

[9]  Christophe Pierre,et al.  Root sensitivity to parameter uncertainties: a statistical approach , 1989 .

[10]  David M. Auslander,et al.  A Design Methodology for Nonlinear Systems Containing Parameter Uncertainity , 1983, 1983 American Control Conference.

[11]  Marie Cottrell,et al.  Large deviations and rare events in the study of stochastic algorithms , 1983 .

[12]  J. Howze,et al.  Regulator design with modal insensitivity , 1979 .

[13]  M. S. Bartlett,et al.  Non-linear transformations of stochastic processes , 1966, The Mathematical Gazette.

[14]  Xiang Li,et al.  On the design of robust controllers for arbitrary uncertainty structures , 2003, IEEE Trans. Autom. Control..

[15]  Elmer Gilbert,et al.  Conditions for minimizing the norm sensitivity of characteristic roots , 1983, The 22nd IEEE Conference on Decision and Control.

[16]  Engin Yaz,et al.  Deterministic and stochastic robustness measures for discrete systems , 1988 .

[17]  Robert F. Stengel,et al.  Stochastic measures of performance robustness in aircraft control systems , 1992 .

[18]  R. Tempo,et al.  Probabilistic robust design of LPV control systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[19]  R. Stengel,et al.  Stochastic robustness synthesis applied to a benchmark control problem , 1995 .

[20]  Samir Bennani,et al.  Robust flight control : a design challenge , 1997 .

[21]  Kiyosi Itô Stochastic Differential Equations , 2018, The Control Systems Handbook.

[22]  Bernard Etkin,et al.  Dynamics of Atmospheric Flight , 1972 .

[23]  Robert F. Stengel,et al.  Robust Control System Design Using Simulated Annealing , 2000 .

[24]  Robert F. Stengel,et al.  Computer-aided analysis of linear control system robustness , 1993 .

[25]  R. C. Spear,et al.  The application of Kolmogorov–Rényi statistics to problems of parameter uncertainty in systems design† , 1970 .

[26]  G. E. Young,et al.  A simulation-based approach to the design of control systems with uncertain parameters , 1982 .

[27]  R. Stengel,et al.  Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems , 1991 .

[28]  Robert F. Stengel,et al.  Parallel stochastic robustness synthesis for control system design , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[29]  George Papageorgiou,et al.  The H∞ loop-shaping approach , 1997 .

[30]  Giuseppe Carlo Calafiore,et al.  Fast algorithms for exact and approximate feasibility of robust LMIs , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[31]  M. Verhaegen,et al.  Robust output-feedback integral MPC: a probabilistic approach , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[32]  Johan Markerink Design of a robust, scheduled controller using μ-synthesis , 1997 .

[33]  Massimiliano Mattei,et al.  Design via LQ methods , 1997 .

[34]  Frank Kozin,et al.  A survey of stability of stochastic systems , 1969, Autom..

[35]  Leonard Anderson Fine tuning of aircraft control laws using PRO-MATLAB software , 1991 .

[36]  Jr. B. Morgan Sensitivity analysis and synthesis of multivariable systems , 1966 .

[37]  Robert F. Stengel,et al.  Searching for Robust Minimal-Order Compensators , 2001 .

[38]  Robert F. Stengel,et al.  Application of stochastic robustness to aircraft control systems , 1991 .

[39]  Karin Ståhl Gunnarsson Design of stability augmentation system using μ-synthesis , 1997 .

[40]  David M. Auslander,et al.  A Statistical Methodology of Designing Controllers for Minimum Sensitivity of Parameter Variations , 1988 .

[41]  B. M. Brown,et al.  Practical Non-Parametric Statistics. , 1981 .

[42]  Christopher I. Marrison,et al.  Design of Robust Control Systems for a Hypersonic Aircraft , 1998 .

[43]  Anthony J. Calise,et al.  Adaptive Output Feedback Control of Uncertain Systems using Single Hidden Layer Neural Networks , 2001 .

[44]  Robert F. Stengel,et al.  A monte carlo approach to the analysis of control system robustness , 1993, Autom..

[45]  David E. Goldberg,et al.  Control system optimization using genetic algorithms , 1992 .

[46]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[47]  Ewan Muir The Robust Inverse Dynamics Estimation approach , 1997 .

[48]  R. Stengel,et al.  Stochastic robustness of linear control systems , 1990 .

[49]  Robert F. Stengel,et al.  Some Effects of Parameter Variations on the Lateral-Directional Stability of Aircraft , 1980 .

[50]  D. Siljak Parameter Space Methods for Robust Control Design: A Guided Tour , 1988, 1988 American Control Conference.

[51]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[52]  Christopher Ian Marrison,et al.  The design of control laws for uncertain dynamic systems using stochastic robustness metrics , 1995 .

[53]  T. R. Crossley,et al.  PROBABILITY OF STABILITY OF LINEAR DYNAMICAL SYSTEMS , 1972 .

[54]  T. W. Anderson,et al.  Approximating the Upper Binomial Confidence Limit , 1967 .

[55]  A. A. Schy,et al.  Multiobjective insensitive design of airplane control systems with uncertain parameters , 1981 .

[56]  Jürgen Ackermann,et al.  Design by Search , 1991 .

[57]  E. Davison,et al.  Robust Control of a General Servomechanism Problem: The Servo Compensator , 1975 .