Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices.

[1]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[2]  Atsuo Yasumori,et al.  Large-Scale Fabrication of Ordered Nanoporous Alumina Films with Arbitrary Pore Intervals by Critical-Potential Anodization , 2006 .

[3]  Yan Fang,et al.  Laser-MBE of nickel nanowires using AAO template: a new active substrate of surface enhanced Raman scattering. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[4]  R. Ruoff,et al.  Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method , 1998 .

[5]  Qiang He,et al.  Highly flexible polyelectrolyte nanotubes. , 2003, Journal of the American Chemical Society.

[6]  C. Toh,et al.  Development of a biomimetic nanoporous membrane for the selective transport of charged proteins , 2008, Bioinspiration & biomimetics.

[7]  Justin D. Holmes,et al.  Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres , 2009 .

[8]  Victor Vega,et al.  An effective method to probe local magnetostatic properties in a nanometric FePd antidot array , 2011 .

[9]  C. R. Martin,et al.  Layer-by-layer nanotube template synthesis. , 2004, Journal of the American Chemical Society.

[10]  Liang Zhao,et al.  Formation of anodic aluminum oxide with serrated nanochannels. , 2010, Nano letters.

[11]  Richard J. Bushby,et al.  Electrically insulating pore-suspending membranes on highly ordered porous obtained from vesicle spreading. , 2008, Soft matter.

[12]  Kaushal Rege,et al.  High-throughput templated multisegment synthesis of gold nanowires and nanorods , 2009, Nanotechnology.

[13]  Seong Uk Hong,et al.  Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[14]  Michael J. Sailor,et al.  A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface , 1999 .

[15]  S. Hong,et al.  Recovery of phosphate using multilayer polyelectrolyte nanofiltration membranes , 2009 .

[16]  A. Ganguli,et al.  Enhanced functionalization of Mn2O3@SiO2 core-shell nanostructures , 2011, Nanoscale research letters.

[17]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[18]  Dusan Losic,et al.  Structural and optical nanoengineering of nanoporous anodic alumina rugate filters for real-time and label-free biosensing applications. , 2014, Analytical chemistry.

[19]  Grzegorz D Sulka,et al.  Distributed Bragg reflector based on porous anodic alumina fabricated by pulse anodization , 2012, Nanotechnology.

[20]  G. Fei,et al.  Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature , 2009, Nanoscale research letters.

[21]  Andrei Ghicov,et al.  Self‐Ordering Electrochemistry: A Review on Growth and Functionality of TiO2 Nanotubes and Other Self‐Aligned MOx Structures , 2009 .

[22]  Karim El Kirat,et al.  Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina. , 2010, Colloids and surfaces. B, Biointerfaces.

[23]  Dongsheng Xu,et al.  Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering , 2010, Nanotechnology.

[24]  Jiahai Wang,et al.  Template-synthesized DNA nanotubes. , 2005, Journal of the American Chemical Society.

[25]  Wolfgang Knoll,et al.  In situ characterization of N-carboxy anhydride polymerization in nanoporous anodic alumina. , 2009, The journal of physical chemistry. B.

[26]  I. Vlassiouk,et al.  Stability of silane modifiers on alumina nanoporous membranes , 2006 .

[27]  Ralph G. Nuzzo,et al.  Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface , 1985 .

[28]  Michael J Sailor,et al.  A label-free porous alumina interferometric immunosensor. , 2009, ACS nano.

[29]  Hans Söderlund,et al.  Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations , 2002, Science.

[30]  Nicolas H Voelcker,et al.  Dressing in layers: layering surface functionalities in nanoporous aluminum oxide membranes. , 2010, Angewandte Chemie.

[31]  Alexander Popp,et al.  Porous carbon nanotube-reinforced metals and ceramics via a double templating approach , 2009 .

[32]  Róbert E. Gyurcsányi,et al.  Chemically-modified nanopores for sensing , 2008 .

[33]  Byung-Woo Kim,et al.  Improvement of sensitivity in an interferometry by controlling pore size on the anodic aluminum oxide chip pore-widening technique , 2009 .

[34]  Erik Johannessen,et al.  Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications. , 2014, Chemical Society reviews.

[35]  Michael J Sailor,et al.  Controlling the role of nanopore morphology in capillary condensation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[36]  Tejal A Desai,et al.  Surface modification of nanoporous alumina surfaces with poly(ethylene glycol). , 2004, Langmuir : the ACS journal of surfaces and colloids.

[37]  Josep Ferré-Borrull,et al.  Structural engineering of nanoporous anodic alumina funnels with high aspect ratio , 2011 .

[38]  G. G. Gorokh,et al.  Anodic oxide cellular structure formation on aluminum films in tartaric acid electrolyte , 1993 .

[39]  F. Keller,et al.  Structural Features of Oxide Coatings on Aluminum , 1953 .

[40]  Reinald Hillebrand,et al.  Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. , 2008, ACS nano.

[41]  Dusan Losic,et al.  Ultrasensitive nanoporous interferometric sensor for label-free detection of gold(III) ions. , 2013, ACS applied materials & interfaces.

[42]  Josep Ferré-Borrull,et al.  Hierarchical nanoporous anodic alumina templates by asymmetric two‐step anodization , 2011 .

[43]  A. Yamaguchi,et al.  Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film. , 2009, Analytical chemistry.

[44]  A. Mozalev,et al.  Study of the initial stage of aluminium anodization in malonic acid solution , 1987 .

[45]  Dusan Losic,et al.  Synthesis of well-organised carbon nanotube membranes from non-degradable plastic bags with tuneable molecular transport: Towards nanotechnological recycling , 2013 .

[46]  Zhengpeng Yang,et al.  Piezoelectric urea biosensor based on immobilization of urease onto nanoporous alumina membranes. , 2007, Biosensors & bioelectronics.

[47]  M. Bruening,et al.  Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. , 2006, Nano letters.

[48]  Dusan Losic,et al.  Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications , 2013 .

[49]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[50]  Toshiaki Kondo,et al.  Optimization of antireflection structures of polymer based on nanoimprinting using anodic porous alumina , 2008 .

[51]  Masato Saito,et al.  Label-free detection of melittin binding to a membrane using electrochemical-localized surface plasmon resonance. , 2008, Analytical chemistry.

[52]  Günter Gauglitz,et al.  Design of new integrated optical substrates for immuno-analytical applications , 1994 .

[53]  Satoru Inoue,et al.  Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing , 2008 .

[54]  Josep Ferré-Borrull,et al.  Tuning the photonic stop bands of nanoporous anodic alumina-based distributed bragg reflectors by pore widening. , 2013, ACS applied materials & interfaces.

[55]  Martin Steinhart,et al.  Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. , 2008, Nature nanotechnology.

[56]  Michal Lahav,et al.  Nanoparticle nanotubes. , 2003, Angewandte Chemie.

[57]  Chad A Mirkin,et al.  Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. , 2006, Angewandte Chemie.

[58]  Aline Debrassi,et al.  Stability of (bio)functionalized porous aluminum oxide. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[59]  Richard M. Pashley,et al.  The production of stable hydrophobic surfaces by the adsorption of hydrocarbon and fluorocarbon carboxylic acids onto alumina substrates , 2001 .

[60]  Claudia Steinem,et al.  Impedance analysis of gramicidin D in pore-suspending membranes , 2009 .

[61]  Hao Shen,et al.  Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. , 2007, Journal of the American Chemical Society.

[62]  Yusuke Yamauchi,et al.  Fabrication of ordered Ni nanocones using a porous anodic alumina template , 2008 .

[63]  Justin D. Holmes,et al.  Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries , 2007 .

[64]  Dusan Losic,et al.  Optically optimized photoluminescent and interferometric biosensors based on nanoporous anodic alumina: a comparison. , 2013, Analytical chemistry.

[65]  Yu-Lun Chueh,et al.  Ultra-Fast Synthesis of Graphene and Highly Oriented Graphite by Rapid Microwave Heating Process , 2014 .

[66]  Michael Keusgen,et al.  A functional immobilization of semiconductor nanoparticles (quantum dots) on nanoporous aluminium oxide , 2010 .

[67]  Robert Vajtai,et al.  Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Charles R. Martin,et al.  Template Synthesis of Nano Test Tubes , 2004 .

[69]  M. Sarret,et al.  Some Considerations on the Influence of Voltage in Potentiostatic Two-Step Anodizing of AA1050 , 2007 .

[70]  Sang Bok Lee,et al.  Shape-coded silica nanotubes for biosensing. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[71]  S. Suen,et al.  Modification of porous alumina membranes with n-alkanoic acids and their application in protein adsorption , 2006 .

[72]  Hyun Woo Shim,et al.  Electrochemical performance of Nixx , 2012 .

[73]  Bruno Demé,et al.  Polymer-cushioned lipid bilayers in porous alumina , 2005, European Biophysics Journal.

[74]  Dusan Losic,et al.  Self-ordered nanopore and nanotube platforms for drug delivery applications , 2009, Expert opinion on drug delivery.

[75]  Wei Wang,et al.  Synthesis of metallic nanotube arrays in porous anodic aluminum oxide template through electroless deposition , 2006 .

[76]  Jiahai Wang,et al.  Template-synthesized protein nanotubes. , 2005, Nano letters.

[77]  L Liu,et al.  Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane , 2008, Nanotechnology.

[78]  Masato Saito,et al.  Immobilization of Gold Nanoparticles on Aluminum Oxide Nanoporous Structure for Highly Sensitive Plasmonic Sensing , 2010 .

[79]  Lewis J. Rothberg,et al.  Interferometric Sensing of Biomolecular Binding Using Nanoporous Aluminum Oxide Templates , 2003 .

[80]  Dusan Losic,et al.  Nanoporous anodic aluminium oxide membranes with layered surface chemistry. , 2009, Chemical communications.

[81]  Sang Bok Lee,et al.  Shape-coded silica nanotubes for multiplexed bioassay: rapid and reliable magnetic decoding protocols. , 2010, Nanomedicine.

[82]  G A Badini Confalonieri,et al.  Template-assisted self-assembly of individual and clusters of magnetic nanoparticles. , 2011, Nanotechnology.

[83]  Seong Uk Hong,et al.  Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes , 2006 .

[84]  Huadong Yu,et al.  Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth , 2008 .

[85]  J. Moiroux,et al.  Formation of Tethered and Streptavidin-Supported Lipid Bilayers on a Microporous Electrode for the Reconstitution of Membranes of Large Surface Area , 2002 .

[86]  Pavel Takmakov,et al.  Sensing DNA hybridization via ionic conductance through a nanoporous electrode. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[87]  Marek Godlewski,et al.  Plasmonic enhancement of blue emission from ZnO nanorods grown on the anodic aluminum oxide (AAO) template , 2013 .

[88]  Mark R. Wiesner,et al.  Surface modification of nanostructured ceramic membranes for direct contact membrane distillation , 2009 .

[89]  L. A. Baker,et al.  Solvent-extraction and Langmuir-adsorption-based transport in chemically functionalized nanopore membranes. , 2005, The journal of physical chemistry. B.

[90]  H. O. Ali,et al.  A review of electroless gold deposition processes , 1984 .

[91]  Eiichi Tamiya,et al.  Interference localized surface plasmon resonance nanosensor tailored for the detection of specific biomolecular interactions. , 2010, Analytical chemistry.

[92]  Steven M. George,et al.  Atomic layer controlled deposition of Al2O3 films using binary reaction sequence chemistry , 1996 .

[93]  A. Smirnov,et al.  Substrate-supported lipid nanotube arrays. , 2003, Journal of the American Chemical Society.

[94]  Zhijia Wang,et al.  Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores. , 2012, ACS applied materials & interfaces.

[95]  Steven M. George,et al.  Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition , 2003 .

[96]  Nicolas H Voelcker,et al.  Nanoporous alumina-based interferometric transducers ennobled. , 2011, Nanoscale.

[97]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[98]  Guang Xiong,et al.  Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes. , 2005, The journal of physical chemistry. B.

[99]  A. Dhathathreyan,et al.  Real-time monitoring of invertase activity immobilized in nanoporous aluminum oxide. , 2011, The journal of physical chemistry. B.

[100]  Akira Yamaguchi,et al.  Enhanced fluorescence in a nanoporous waveguide and its quantitative analysis. , 2012, Optics express.

[101]  Ali Eftekhari,et al.  Nanostructured Materials in Electrochemistry , 2008 .

[102]  Sangjin Park,et al.  Carbon nanosyringe array as a platform for intracellular delivery. , 2009, Nano letters.

[103]  Michal Lahav,et al.  Template Synthesis of Nanotubes by Room-Temperature Coalescence of Metal Nanoparticles , 2005 .

[104]  Lu Ouyang,et al.  Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[105]  Huiyuan Sun,et al.  Optical and magnetic properties of PAA@Fe nanocomposite films , 2013 .

[106]  Joseph G. Shapter,et al.  Impedance spectroscopy study of nanopore arrays for biosensing applications , 2014 .

[107]  Josep Ferré-Borrull,et al.  Understanding and morphology control of pore modulations in nanoporous anodic alumina by discontinuous anodization , 2012 .

[108]  Steven M. George,et al.  In situ monitoring of atomic layer controlled pore reduction in alumina tubular membranes using sequential surface reactions , 1998 .

[109]  Dusan Losic,et al.  Insitu monitored engineering of inverted nanoporous anodic alumina funnels: on the precise generation of 3D optical nanostructures. , 2014, Nanoscale.

[110]  Liang-Yin Chu,et al.  Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method , 2009 .

[111]  Weiping Cai,et al.  Highly ordered nanostructures with tunable size, shape and properties : A new way to surface nano-patterning using ultra-thin alumina masks , 2007 .

[112]  Sang Bok Lee,et al.  Suspension array with shape-coded silica nanotubes for multiplexed immunoassays. , 2007, Analytical chemistry.

[113]  R. T. Short,et al.  Direct coupling of a carbon nanotube membrane to a mass spectrometer: Contrasting nanotube and capillary tube introduction systems , 2009 .

[114]  Sang Won Lee,et al.  Transport and functional behaviour of poly(ethylene glycol)-modified nanoporous alumina membranes , 2005 .

[115]  Dusan Losic,et al.  Nanoporous anodic aluminum oxide for chemical sensing and biosensors , 2013 .

[116]  C. Toh,et al.  Transport and separation of proteins across platinum-coated nanoporous alumina membranes , 2008 .

[117]  Dusan Losic,et al.  Surface modification of nanoporous alumina membranes by plasma polymerization , 2008, Nanotechnology.

[118]  Sachiko Ono,et al.  Self-ordering of anodic porous alumina formed in organic acid electrolytes , 2005 .

[119]  Dusan Losic,et al.  A nanoporous interferometric micro-sensor for biomedical detection of volatile sulphur compounds , 2011, Nanoscale research letters.

[120]  Charles R. Martin,et al.  Sol−Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures , 1997 .

[121]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[122]  Sachiko Ono,et al.  Controlling Factor of Self-Ordering of Anodic Porous Alumina , 2004 .

[123]  Masato Saito,et al.  Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry. , 2007, Analytical chemistry.

[124]  Joseph G. Shapter,et al.  Structural and chemical modification of porous alumina membranes , 2009 .

[125]  Pavel Takmakov,et al.  Application of anodized aluminum in fluorescence detection of biological species , 2006, Analytical and bioanalytical chemistry.

[126]  W. Knoll,et al.  Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates : a waveguide optical study , 2004 .

[127]  Michael J Sailor,et al.  Gas adsorption and capillary condensation in nanoporous alumina films , 2008, Nanotechnology.

[128]  Kornelius Nielsch,et al.  A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. , 2005, Angewandte Chemie.

[129]  Kornelius Nielsch,et al.  Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes. , 2009, ACS nano.

[130]  Hideki Masuda,et al.  Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution , 1998 .

[131]  Andrei Ghicov,et al.  Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. , 2009, Chemical communications.

[132]  Dusan Losic,et al.  Reflective interferometric gas sensing using nanoporous anodic aluminium oxide (AAO) , 2011 .

[133]  Kazuyuki Nishio,et al.  Flow‐Through‐Type DNA Array Based on Ideally Ordered Anodic Porous Alumina Substrate , 2004 .

[134]  Byoung-Ho Kang,et al.  Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference. , 2011, Optics express.

[135]  Anagi M. Balachandra,et al.  Enhancing the Anion-Transport Selectivity of Multilayer Polyelectrolyte Membranes by Templating with Cu2+ , 2002 .

[136]  Anthony Y Ku,et al.  Evidence of ion transport through surface conduction in alkylsilane-functionalized nanoporous ceramic membranes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[137]  A. Yamaguchi,et al.  Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing. , 2012, ACS nano.

[138]  Pui-Sze Cheow,et al.  Grafting of nanoporous alumina membranes and films with organic acids , 2007 .

[139]  Plamen Atanassov,et al.  Fabrication of Anisotropic Super Hydrophobic/Hydrophilic Nanoporous Membranes by Plasma Polymerization of C 4 F 8 on Anodic Aluminum Oxide , 2004 .

[140]  Alexandros Koutsioubas,et al.  Nanoporous alumina enhanced surface plasmon resonance sensors , 2008 .

[141]  Ralf B. Wehrspohn,et al.  Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule , 2002 .

[142]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[143]  Sachiko Ono,et al.  Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution , 1997 .

[144]  Dusan Losic,et al.  Real-time and in situ drug release monitoring from nanoporous implants under dynamic flow conditions by reflectometric interference spectroscopy. , 2013, ACS applied materials & interfaces.

[145]  Krishna Kant,et al.  Impedance nanopore biosensor: influence of pore dimensions on biosensing performance. , 2014, The Analyst.

[146]  Y. Yamamoto,et al.  Coloured materials and photoluminescence centres in anodic film on aluminium , 1981, Nature.

[147]  G. C. Wall THE SOL-GEL PROCESS , 1965 .

[148]  Wenjun Zhang,et al.  Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes. , 2009, Small.

[149]  Masaomi Kameyama,et al.  Simple and rapid preparation of vertically aligned gold nanoparticle arrays and fused nanorods in pores of alumina membrane based on positive dielectrophoresis , 2009 .

[150]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[151]  B. Lee,et al.  Low-temperature atomic layer deposition of copper metal thin films: self-limiting surface reaction of copper dimethylamino-2-propoxide with diethylzinc. , 2009, Angewandte Chemie.

[152]  Lara Leoni,et al.  Biocompatibility of nanoporous alumina membranes for immunoisolation. , 2007, Biomaterials.

[153]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[154]  Joseph G. Shapter,et al.  Self-ordering Electrochemistry: A Simple Approach for Engineering Nanopore and Nanotube Arrays for Emerging Applications* , 2011 .

[155]  Dusan Losic,et al.  Preparation of porous anodic alumina with periodically perforated pores. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[156]  Josep Ferré-Borrull,et al.  Gold-coated ordered nanoporous anodic alumina bilayers for future label-free interferometric biosensors. , 2013, ACS applied materials & interfaces.

[157]  Qiang He,et al.  Assembled alginate/chitosan nanotubes for biological application. , 2007, Biomaterials.

[158]  Sidney T. Malak,et al.  Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection , 2013 .

[159]  Hideaki Takahashi,et al.  Anodic film growth on Al layers and Ta–Al metal bilayers in citric acid electrolytes , 2005 .

[160]  Gregory L Baker,et al.  Use of porous membranes modified with polyelectrolyte multilayers as substrates for protein arrays with low nonspecific adsorption. , 2006, Analytical chemistry.

[161]  Kleber R. Pirota,et al.  Magnetostatic behaviour of antidot arrays under the local influence of nanopillars , 2012 .

[162]  Dusan Losic,et al.  Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization. , 2009, Small.

[163]  G. C. Wood,et al.  5 - Anodic Films on Aluminium , 1983 .

[164]  Dusan Losic,et al.  Controlling interferometric properties of nanoporous anodic aluminium oxide , 2012, Nanoscale Research Letters.

[165]  Claudia Steinem,et al.  Pore-Suspending Lipid Bilayers on Porous Alumina Investigated by Electrical Impedance Spectroscopy , 2003 .

[166]  Dusan Losic,et al.  Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. , 2012, Biosensors & bioelectronics.

[167]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[168]  R. Gordon,et al.  Atomic layer deposition of transition metals , 2003, Nature materials.

[169]  Toshiaki Kondo,et al.  Surface-Enhanced Raman Scattering in Multilayered Au Nanoparticles in Anodic Porous Alumina Matrix , 2009 .

[170]  Colin J Ingham,et al.  Where bio meets nano: the many uses for nanoporous aluminum oxide in biotechnology. , 2012, Biotechnology advances.

[171]  Geoffrey A. Ozin,et al.  Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs) , 2005 .

[172]  Nikolay Petkov,et al.  Vertical columnar block-copolymer-templated mesoporous silica via confined phase transformation. , 2008, Journal of the American Chemical Society.

[173]  Per Persson,et al.  Comparison of monolayer films of stearic acid and methyl stearate on an Al2O3 surface , 2001 .

[174]  David L. Allara,et al.  Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface , 1985 .