The first submillimeter observation of CO in the stratosphere of Uranus

Context. Carbon monoxide (CO) has been detected in all giant planets and its origin is both internal and external in Jupiter and Neptune. Despite its first detection in Uranus a decade ago, the magnitude of its internal and external sources remains unconstrained. Aims: We targeted CO lines in Uranus in the submillimeter range to constrain its origin. Methods: We recorded the disk-averaged spectrum of Uranus with very high spectral resolution at the frequencies of CO rotational lines in the submillimeter range in 2011-2012. We used empirical and diffusion models of the atmosphere of Uranus to constrain the origin of CO. We also used a thermochemical model of its troposphere to derive an upper limit on the oxygen-to-hydrogen (O/H) ratio in the deep atmosphere of Uranus. Results: We have detected the CO(8-7) rotational line for the first time with Herschel-HIFI. Both empirical and diffusion models results show that CO has an external origin. An empirical profile in which CO is constant above the 100 mbar level with a mole fraction of 7.1-9.0 × 10-9, depending on the adopted stratospheric thermal structure, reproduces the data. Sporadic and steady source models cannot be differentiated with our data. Taking the internal source model upper limit of a mole fraction of 2.1 × 10-9 we find, based on our thermochemical computations, that the deep O/H ratio of Uranus is less than 500 times solar. Conclusions: Our work shows that the average mole fraction of CO decreases from the stratosphere to the troposphere and thus strongly advocates for an external source of CO in Uranus. Photochemical modeling of oxygen species in the atmosphere of Uranus and more sensitive observations are needed to reveal the nature of the external source. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

[1]  C. Russell,et al.  The science case for an orbital mission to Uranus: exploring the origins and evolution of ice giant planets , 2014 .

[2]  N. Teanby,et al.  AN EXTERNAL ORIGIN FOR CARBON MONOXIDE ON URANUS FROM HERSCHEL/SPIRE? , 2013 .

[3]  Miguel de Val-Borro,et al.  Spatial distribution of water in the stratosphere of Jupiter from Herschel HIFI and PACS observations , 2013 .

[4]  G. Orton,et al.  The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations , 2013, 1301.5781.

[5]  P. Hartogh,et al.  The abundance, vertical distribution and origin of H2O in Titan's atmosphere: Herschel observations and photochemical modelling , 2012 .

[6]  I. Pater,et al.  Constraining the origins of Neptune’s carbon monoxide abundance with CARMA millimeter-wave observations , 2012, 1301.1990.

[7]  Roda Bounaceur,et al.  A chemical model for the atmosphere of hot Jupiters , 2012, 1208.0560.

[8]  G. Orton,et al.  Sub-millimetre spectroscopy of Saturn’s trace gases from Herschel/SPIRE , 2012 .

[9]  P. Hartogh,et al.  Odin space telescope monitoring of water vapor in the stratosphere of Jupiter , 2012 .

[10]  Michael Olberg,et al.  In-orbit performance of Herschel-HIFI , 2012 .

[11]  L. Sromovsky,et al.  Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.

[12]  P. Hartogh,et al.  Direct detection of the Enceladus water torus with Herschel , 2011 .

[13]  F. Billebaud,et al.  A methodology to construct a reduced chemical scheme for 2D-3D photochemical models: Application to Saturn , 2011 .

[14]  F. Billebaud,et al.  Key reactions in the photochemistry of hydrocarbons in Neptune's stratosphere , 2010 .

[15]  Miguel de Val-Borro,et al.  First results of Herschel-PACS observations of Neptune , 2010, 1006.0114.

[16]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[17]  T. Encrenaz,et al.  Neptune's atmospheric composition from AKARI infrared spectroscopy , 2010, 1003.5571.

[18]  T. Encrenaz,et al.  A cometary origin for CO in the stratosphere of Saturn , 2010 .

[19]  T. Encrenaz,et al.  First observation of CO at 345 GHz in the atmosphere of Saturn with the JCMT. New constraints on its origin , 2009 .

[20]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[21]  Nicolas Thomas,et al.  Water and Related Chemistry in the Solar System. A Guaranteed Time Key Programme for Herschel , 2009 .

[22]  M. Tomasko,et al.  The haze and methane distributions on Uranus from HST-STIS spectroscopy , 2009 .

[23]  E. Bergin,et al.  Observation of water vapor in the stratosphere of Jupiter with the Odin space telescope , 2008 .

[24]  E. Lellouch,et al.  Observations of CO on Saturn and Uranus at millimeter wavelengths: New upper limit determinations , 2008 .

[25]  L. Sromovsky,et al.  The methane abundance and structure of Uranus' cloud bands inferred from spatially resolved 2006 Keck grism spectra ☆ , 2008 .

[26]  G. Orton,et al.  Revised ab initio models for H2–H2 collision-induced absorption at low temperatures , 2007 .

[27]  H. Rickman,et al.  Nucleus properties of Comet 9P/Tempel 1 estimated from non-gravitational force modeling , 2007 .

[28]  G. Orton,et al.  The abundance profile of CO in Neptune's atmosphere , 2007 .

[29]  James R. Houck,et al.  Detection of new hydrocarbons in Uranus' atmosphere by infrared spectroscopy , 2006 .

[30]  D. Strobel,et al.  On the HCN and CO2 abundance and distribution in Jupiter's stratosphere , 2006 .

[31]  E. Lellouch,et al.  Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets , 2005 .

[32]  M. Lopez-Valverde,et al.  Carbon monoxide fluorescence from Titan's atmosphere , 2005 .

[33]  V. M. Devi,et al.  A multispectrum analysis of widths and shifts in the 2010–2260 cm−1 region of 12C16O broadened by Helium at temperatures between 80 and 297 K , 2005 .

[34]  E. Lellouch,et al.  A dual origin for Neptune's carbon monoxide? , 2005 .

[35]  D. Gautier,et al.  Formation and Composition of Planetesimals , 2005 .

[36]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[37]  P. Varanasi,et al.  Hydrogen-broadened half-widths and hydrogen-induced line shifts of relevant to the Jovian atmospheric spectra , 2004 .

[38]  A. Marten,et al.  Long-term evolution of CO, CS and HCN in Jupiter after the impacts of comet Shoemaker-Levy 9 , 2003 .

[39]  T. Encrenaz,et al.  First detection of CO in Uranus , 2003 .

[40]  P. Drossart,et al.  Carbon Monoxide on Jupiter: Evidence for Both Internal and External Sources , 2002 .

[41]  Helmut Feuchtgruber,et al.  The origin of water vapor and carbon dioxide in Jupiter's stratosphere , 2002 .

[42]  M. Landgraf,et al.  Origins of Solar System Dust beyond Jupiter , 2002, astro-ph/0201291.

[43]  M. Allen,et al.  Photochemistry of Saturn's Atmosphere: II. Effects of an Influx of External Oxygen , 2000 .

[44]  Imke de Pater,et al.  A low-temperature origin for the planetesimals that formed Jupiter , 1999, Nature.

[45]  Kevin Zahnle,et al.  Cratering Rates in the Outer Solar System , 1999 .

[46]  E. Lellouch,et al.  Carbon monoxide in Jupiter after the impact of comet Shoemaker-Levy 9 , 1997 .

[47]  E. Lellouch,et al.  External supply of oxygen to the atmospheres of the giant planets , 1997, Nature.

[48]  M. E. Mickelson,et al.  The Abundances of Methane and Ortho/Para Hydrogen on Uranus and Neptune: Implications of New Laboratory 4-0 H2 Quadrupole Line Parameters , 1995 .

[49]  T. Encrenaz,et al.  Chemical and thermal response of Jupiter's atmosphere following the impact of comet Shoemaker–Levy 9 , 1995, Nature.

[50]  B. Fegley,et al.  The Origin of Carbon Monoxide in Neptune's Atmosphere , 1993 .

[51]  T. Owen,et al.  First observations of CO and HCN on Neptune and Uranus at millimeter wavelengths and the implications for atmospheric chemistry , 1993 .

[52]  T. Encrenaz,et al.  Millimeter-Wave Observations of Saturn, Uranus, and Neptune: CO and HCN on Neptune , 1992 .

[53]  A. Coustenis,et al.  The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data , 1990 .

[54]  D. Gautier,et al.  The helium abundance of Uranus from Voyager measurements , 1987 .

[55]  G. Orton,et al.  The spectra of Uranus and Neptune at 8-14 and 17-23 microns , 1987 .

[56]  Jacek Borysow,et al.  Collison-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K , 1986 .

[57]  A. Borysow,et al.  Theoretical collision-induced rototranslational absorption spectra for the outer planets: H2-CH4 pairs , 1986 .

[58]  J. Borysow,et al.  Modeling of pressure-induced far-infrared absorption spectra Molecular hydrogen pairs. [in outer planets atmospheres , 1985 .

[59]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[60]  Y. Yung,et al.  CO2 on Titan , 1983 .

[61]  J. Logan,et al.  Carbon monoxide in jupiter's upper atmosphere: An extraplanetary source , 1978 .

[62]  D. Strobel,et al.  The Galilean satellites as a source of CO in the Jovian upper atmosphere , 1978 .

[63]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .