The first submillimeter observation of CO in the stratosphere of Uranus
暂无分享,去创建一个
T. Encrenaz | G. Orton | P. Hartogh | C. Jarchow | E. Lellouch | T. Cavali'e | F. Selsis | R. Moreno | L. Fletcher | T. Cavalié | O. Venot | F. Hersant
[1] C. Russell,et al. The science case for an orbital mission to Uranus: exploring the origins and evolution of ice giant planets , 2014 .
[2] N. Teanby,et al. AN EXTERNAL ORIGIN FOR CARBON MONOXIDE ON URANUS FROM HERSCHEL/SPIRE? , 2013 .
[3] Miguel de Val-Borro,et al. Spatial distribution of water in the stratosphere of Jupiter from Herschel HIFI and PACS observations , 2013 .
[4] G. Orton,et al. The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations , 2013, 1301.5781.
[5] P. Hartogh,et al. The abundance, vertical distribution and origin of H2O in Titan's atmosphere: Herschel observations and photochemical modelling , 2012 .
[6] I. Pater,et al. Constraining the origins of Neptune’s carbon monoxide abundance with CARMA millimeter-wave observations , 2012, 1301.1990.
[7] Roda Bounaceur,et al. A chemical model for the atmosphere of hot Jupiters , 2012, 1208.0560.
[8] G. Orton,et al. Sub-millimetre spectroscopy of Saturn’s trace gases from Herschel/SPIRE , 2012 .
[9] P. Hartogh,et al. Odin space telescope monitoring of water vapor in the stratosphere of Jupiter , 2012 .
[10] Michael Olberg,et al. In-orbit performance of Herschel-HIFI , 2012 .
[11] L. Sromovsky,et al. Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.
[12] P. Hartogh,et al. Direct detection of the Enceladus water torus with Herschel , 2011 .
[13] F. Billebaud,et al. A methodology to construct a reduced chemical scheme for 2D-3D photochemical models: Application to Saturn , 2011 .
[14] F. Billebaud,et al. Key reactions in the photochemistry of hydrocarbons in Neptune's stratosphere , 2010 .
[15] Miguel de Val-Borro,et al. First results of Herschel-PACS observations of Neptune , 2010, 1006.0114.
[16] S. Ott,et al. Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.
[17] T. Encrenaz,et al. Neptune's atmospheric composition from AKARI infrared spectroscopy , 2010, 1003.5571.
[18] T. Encrenaz,et al. A cometary origin for CO in the stratosphere of Saturn , 2010 .
[19] T. Encrenaz,et al. First observation of CO at 345 GHz in the atmosphere of Saturn with the JCMT. New constraints on its origin , 2009 .
[20] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[21] Nicolas Thomas,et al. Water and Related Chemistry in the Solar System. A Guaranteed Time Key Programme for Herschel , 2009 .
[22] M. Tomasko,et al. The haze and methane distributions on Uranus from HST-STIS spectroscopy , 2009 .
[23] E. Bergin,et al. Observation of water vapor in the stratosphere of Jupiter with the Odin space telescope , 2008 .
[24] E. Lellouch,et al. Observations of CO on Saturn and Uranus at millimeter wavelengths: New upper limit determinations , 2008 .
[25] L. Sromovsky,et al. The methane abundance and structure of Uranus' cloud bands inferred from spatially resolved 2006 Keck grism spectra ☆ , 2008 .
[26] G. Orton,et al. Revised ab initio models for H2–H2 collision-induced absorption at low temperatures , 2007 .
[27] H. Rickman,et al. Nucleus properties of Comet 9P/Tempel 1 estimated from non-gravitational force modeling , 2007 .
[28] G. Orton,et al. The abundance profile of CO in Neptune's atmosphere , 2007 .
[29] James R. Houck,et al. Detection of new hydrocarbons in Uranus' atmosphere by infrared spectroscopy , 2006 .
[30] D. Strobel,et al. On the HCN and CO2 abundance and distribution in Jupiter's stratosphere , 2006 .
[31] E. Lellouch,et al. Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets , 2005 .
[32] M. Lopez-Valverde,et al. Carbon monoxide fluorescence from Titan's atmosphere , 2005 .
[33] V. M. Devi,et al. A multispectrum analysis of widths and shifts in the 2010–2260 cm−1 region of 12C16O broadened by Helium at temperatures between 80 and 297 K , 2005 .
[34] E. Lellouch,et al. A dual origin for Neptune's carbon monoxide? , 2005 .
[35] D. Gautier,et al. Formation and Composition of Planetesimals , 2005 .
[36] C. Kramer,et al. The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..
[37] P. Varanasi,et al. Hydrogen-broadened half-widths and hydrogen-induced line shifts of relevant to the Jovian atmospheric spectra , 2004 .
[38] A. Marten,et al. Long-term evolution of CO, CS and HCN in Jupiter after the impacts of comet Shoemaker-Levy 9 , 2003 .
[39] T. Encrenaz,et al. First detection of CO in Uranus , 2003 .
[40] P. Drossart,et al. Carbon Monoxide on Jupiter: Evidence for Both Internal and External Sources , 2002 .
[41] Helmut Feuchtgruber,et al. The origin of water vapor and carbon dioxide in Jupiter's stratosphere , 2002 .
[42] M. Landgraf,et al. Origins of Solar System Dust beyond Jupiter , 2002, astro-ph/0201291.
[43] M. Allen,et al. Photochemistry of Saturn's Atmosphere: II. Effects of an Influx of External Oxygen , 2000 .
[44] Imke de Pater,et al. A low-temperature origin for the planetesimals that formed Jupiter , 1999, Nature.
[45] Kevin Zahnle,et al. Cratering Rates in the Outer Solar System , 1999 .
[46] E. Lellouch,et al. Carbon monoxide in Jupiter after the impact of comet Shoemaker-Levy 9 , 1997 .
[47] E. Lellouch,et al. External supply of oxygen to the atmospheres of the giant planets , 1997, Nature.
[48] M. E. Mickelson,et al. The Abundances of Methane and Ortho/Para Hydrogen on Uranus and Neptune: Implications of New Laboratory 4-0 H2 Quadrupole Line Parameters , 1995 .
[49] T. Encrenaz,et al. Chemical and thermal response of Jupiter's atmosphere following the impact of comet Shoemaker–Levy 9 , 1995, Nature.
[50] B. Fegley,et al. The Origin of Carbon Monoxide in Neptune's Atmosphere , 1993 .
[51] T. Owen,et al. First observations of CO and HCN on Neptune and Uranus at millimeter wavelengths and the implications for atmospheric chemistry , 1993 .
[52] T. Encrenaz,et al. Millimeter-Wave Observations of Saturn, Uranus, and Neptune: CO and HCN on Neptune , 1992 .
[53] A. Coustenis,et al. The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data , 1990 .
[54] D. Gautier,et al. The helium abundance of Uranus from Voyager measurements , 1987 .
[55] G. Orton,et al. The spectra of Uranus and Neptune at 8-14 and 17-23 microns , 1987 .
[56] Jacek Borysow,et al. Collison-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K , 1986 .
[57] A. Borysow,et al. Theoretical collision-induced rototranslational absorption spectra for the outer planets: H2-CH4 pairs , 1986 .
[58] J. Borysow,et al. Modeling of pressure-induced far-infrared absorption spectra Molecular hydrogen pairs. [in outer planets atmospheres , 1985 .
[59] H. Müller,et al. Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.
[60] Y. Yung,et al. CO2 on Titan , 1983 .
[61] J. Logan,et al. Carbon monoxide in jupiter's upper atmosphere: An extraplanetary source , 1978 .
[62] D. Strobel,et al. The Galilean satellites as a source of CO in the Jovian upper atmosphere , 1978 .
[63] N. Lomb. Least-squares frequency analysis of unequally spaced data , 1976 .