Optimal multilevel preconditioners for isogeometric collocation methods
暂无分享,去创建一个
[1] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[2] Alessandro Reali,et al. GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..
[3] D. F. Rogers,et al. An Introduction to NURBS: With Historical Perspective , 2011 .
[4] Timon Rabczuk,et al. An isogeometric collocation method using superconvergent points , 2015 .
[5] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[6] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[7] Bert Jüttler,et al. IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.
[8] Alessandro Reali,et al. An Introduction to Isogeometric Collocation Methods , 2015 .
[9] Rafael Vázquez Hernández,et al. BPX preconditioners for isogeometric analysis using analysis-suitable T-splines , 2018, IMA Journal of Numerical Analysis.
[10] Hector Gomez,et al. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..
[11] G. Farin. NURB curves and surfaces: from projective geometry to practical use , 1995 .
[12] John A. Evans,et al. Isogeometric collocation: Neumann boundary conditions and contact , 2015 .
[13] Alessandro Reali,et al. Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .
[14] Hendrik Speleers,et al. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .
[15] Luca F. Pavarino,et al. BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .
[16] Stephen Demko,et al. On the existence of interpolating projections onto spline spaces , 1985 .
[17] Victor M. Calo,et al. The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .
[18] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[19] T. Hughes,et al. Isogeometric collocation for elastostatics and explicit dynamics , 2012 .
[20] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[21] Alessandro Reali,et al. Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .
[22] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .
[23] Giancarlo Sangalli,et al. Optimal-order isogeometric collocation at Galerkin superconvergent points , 2016, 1609.01971.
[24] Olof B. Widlund,et al. Adaptive Selection of Primal Constraints for Isogeometric BDDC Deluxe Preconditioners , 2017, SIAM J. Sci. Comput..
[25] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[26] Luca F. Pavarino,et al. Isogeometric Schwarz preconditioners for linear elasticity systems , 2013 .
[27] Luca F. Pavarino,et al. Overlapping Schwarz preconditioners for isogeometric collocation methods , 2014 .
[28] Victor M. Calo,et al. The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..
[29] Luca F. Pavarino,et al. Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..
[30] Rafael Vázquez,et al. A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0 , 2016, Comput. Math. Appl..
[31] J. Kraus,et al. Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.
[32] Olof B. Widlund,et al. Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..
[33] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[34] T. Hughes,et al. A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .
[35] Luca F. Pavarino,et al. Isogeometric block FETI-DP preconditioners for the Stokes and mixed linear elasticity systems , 2016 .
[36] T. Hughes,et al. ISOGEOMETRIC COLLOCATION METHODS , 2010 .
[37] Ricardo H. Nochetto,et al. Optimal multilevel methods for graded bisection grids , 2012, Numerische Mathematik.
[38] J. Kraus,et al. Algebraic multilevel preconditioning in isogeometric analysis: Construction and numerical studies , 2013, 1304.0403.
[39] Olof B. Widlund,et al. Isogeometric BDDC Preconditioners with Deluxe Scaling , 2014, SIAM J. Sci. Comput..
[40] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[41] R. Kettler. Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods , 1982 .
[42] Giancarlo Sangalli,et al. BPX-preconditioning for isogeometric analysis , 2013 .
[43] Alessandro Reali,et al. Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .
[44] Osamu Tatebe,et al. Efficient implementation of the multigrid preconditioned conjugate gradient method on distributed memory machines , 1994, Proceedings of Supercomputing '94.