Optimal multilevel preconditioners for isogeometric collocation methods

Abstract We present optimal additive and multiplicative multilevel methods, such as BPX preconditioner and multigrid V-cycle, for the solution of linear systems arising from isogeometric collocation discretizations of second order elliptic problems. These resulting preconditioners, accelerated by GMRES, lead to optimal complexity for the number of levels, and illustrate their good performance with respect to the isogeometric discretization parameters such as the spline polynomial degree and regularity of the isogeometric basis functions, as well as with respect to domain deformations.

[1]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[2]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[3]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[4]  Timon Rabczuk,et al.  An isogeometric collocation method using superconvergent points , 2015 .

[5]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[6]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[7]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[8]  Alessandro Reali,et al.  An Introduction to Isogeometric Collocation Methods , 2015 .

[9]  Rafael Vázquez Hernández,et al.  BPX preconditioners for isogeometric analysis using analysis-suitable T-splines , 2018, IMA Journal of Numerical Analysis.

[10]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[11]  G. Farin NURB curves and surfaces: from projective geometry to practical use , 1995 .

[12]  John A. Evans,et al.  Isogeometric collocation: Neumann boundary conditions and contact , 2015 .

[13]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[14]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .

[15]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[16]  Stephen Demko,et al.  On the existence of interpolating projections onto spline spaces , 1985 .

[17]  Victor M. Calo,et al.  The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .

[18]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[19]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[20]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[21]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[22]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[23]  Giancarlo Sangalli,et al.  Optimal-order isogeometric collocation at Galerkin superconvergent points , 2016, 1609.01971.

[24]  Olof B. Widlund,et al.  Adaptive Selection of Primal Constraints for Isogeometric BDDC Deluxe Preconditioners , 2017, SIAM J. Sci. Comput..

[25]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[26]  Luca F. Pavarino,et al.  Isogeometric Schwarz preconditioners for linear elasticity systems , 2013 .

[27]  Luca F. Pavarino,et al.  Overlapping Schwarz preconditioners for isogeometric collocation methods , 2014 .

[28]  Victor M. Calo,et al.  The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..

[29]  Luca F. Pavarino,et al.  Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..

[30]  Rafael Vázquez,et al.  A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0 , 2016, Comput. Math. Appl..

[31]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[32]  Olof B. Widlund,et al.  Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..

[33]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[34]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[35]  Luca F. Pavarino,et al.  Isogeometric block FETI-DP preconditioners for the Stokes and mixed linear elasticity systems , 2016 .

[36]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[37]  Ricardo H. Nochetto,et al.  Optimal multilevel methods for graded bisection grids , 2012, Numerische Mathematik.

[38]  J. Kraus,et al.  Algebraic multilevel preconditioning in isogeometric analysis: Construction and numerical studies , 2013, 1304.0403.

[39]  Olof B. Widlund,et al.  Isogeometric BDDC Preconditioners with Deluxe Scaling , 2014, SIAM J. Sci. Comput..

[40]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[41]  R. Kettler Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods , 1982 .

[42]  Giancarlo Sangalli,et al.  BPX-preconditioning for isogeometric analysis , 2013 .

[43]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[44]  Osamu Tatebe,et al.  Efficient implementation of the multigrid preconditioned conjugate gradient method on distributed memory machines , 1994, Proceedings of Supercomputing '94.