Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b

We have developed a pseudo two-dimensional model of a planetary atmosphere, which takes into account thermochemical kinetics, photochemistry, vertical mixing, and horizontal transport, the latter being modeled as a uniform zonal wind. We have applied the model to the atmospheres of the hot Jupiters HD 209458b and HD 189733b. The adopted eddy diffusion coefficients are calculated by following the behaviour of passive tracers in three-dimensional general circulation models, which results in eddy values significantly below previous estimates. We find that the distribution of molecules with altitude and longitude in the atmospheres of these two hot Jupiters is complex because of the interplay of the various physical and chemical processes at work. Much of the distribution of molecules is driven by the strong zonal wind and the limited extent of vertical transport, resulting in an important homogenisation of the chemical composition with longitude. In general, molecular abundances are quenched horizontally to values typical of the hottest dayside regions, and thus the composition in the cooler nightside regions is highly contaminated by that of warmer dayside regions. As a consequence, the abundance of methane remains low, even below the predictions of previous one-dimensional models, which is likely to be in conflict with the high CH4 content inferred from observations of the dayside of HD 209458b. Another consequence of the important longitudinal homogenisation of the abundances is that the variability of the chemical composition has little effect on the way the emission spectrum is modified with phase and on the changes in the transmission spectrum from the transit ingress to the egress, these variations in the spectra being mainly due to changes in the temperature rather than in the composition between the different sides of the planet.

[1]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[2]  Simon Albrecht,et al.  Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b , 2013, 1304.4014.

[3]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[4]  S. Seager,et al.  ON THE INFERENCE OF THERMAL INVERSIONS IN HOT JUPITER ATMOSPHERES , 2010, 1010.4585.

[5]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[6]  L. Polvani,et al.  EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS , 2011, 1103.3101.

[7]  A time-dependent radiative model of HD 209458b , 2004, astro-ph/0409468.

[8]  Roda Bounaceur,et al.  A chemical model for the atmosphere of hot Jupiters , 2012, 1208.0560.

[9]  R. Freedman,et al.  CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b , 2012, The Astrophysical journal.

[10]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[11]  Sara Seager,et al.  INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE , 2013, 1309.7894.

[12]  R. Perna,et al.  THE EFFECTS OF IRRADIATION ON HOT JOVIAN ATMOSPHERES: HEAT REDISTRIBUTION AND ENERGY DISSIPATION , 2012, 1201.5391.

[13]  R. J. de Kok,et al.  Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm , 2013, 1307.1133.

[14]  Nikole K. Lewis,et al.  DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS , 2011, 1207.5639.

[15]  K. Menou,et al.  THREE-DIMENSIONAL MODELING OF HOT JUPITER ATMOSPHERIC FLOWS , 2009, 0907.2692.

[16]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[17]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[18]  E. Agol,et al.  A TWO-DIMENSIONAL INFRARED MAP OF THE EXTRASOLAR PLANET HD 189733b , 2012, 1202.1883.

[19]  Drake Deming,et al.  Accepted for publication in the Astrophysical Journal Strong Infrared Emission from the Extrasolar Planet HD189733b , 2006 .

[20]  M. Marley,et al.  ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT NEPTUNE GJ436b , 2010, 1007.2942.

[21]  F. Selsis,et al.  The impact of atmospheric circulation on the chemistry of the hot Jupiter HD 209458b , 2012, 1210.6627.

[22]  I. P. Waldmann,et al.  GROUND-BASED NEAR-INFRARED EMISSION SPECTROSCOPY OF HD 189733B , 2011, 1104.0570.

[23]  W. Demore,et al.  Photochemistry of Planetary Atmospheres , 1998 .

[24]  A. Burrows,et al.  DETECTION OF A TEMPERATURE INVERSION IN THE BROADBAND INFRARED EMISSION SPECTRUM OF TrES-4 , 2008, 0810.0021.

[25]  University of Exeter,et al.  A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features , 2010, 1010.1753.

[26]  D. Charbonneau,et al.  Hot nights on extrasolar planets: mid‐infrared phase variations of hot Jupiters , 2007, 0705.1189.

[27]  K. Menou,et al.  A GENERAL CIRCULATION MODEL FOR GASEOUS EXOPLANETS WITH DOUBLE-GRAY RADIATIVE TRANSFER , 2011, 1112.1658.

[28]  Josef Humlíček,et al.  Optimized computation of the voigt and complex probability functions , 1982 .

[29]  F. Selsis,et al.  The atmospheric chemistry of the warm Neptune GJ 3470b: Influence of metallicity and temperature on the CH4/CO ratio , 2013, 1312.5163.

[30]  A. Showman,et al.  ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS , 2013, 1306.4673.

[31]  L. Stief Photochemistry of planetary atmospheres. [Mars atmospheric composition] , 1973 .

[32]  Emily Rauscher,et al.  CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT , 2011, 1109.2270.

[33]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[34]  F. Selsis,et al.  THE PUZZLING CHEMICAL COMPOSITION OF GJ 436B'S ATMOSPHERE: INFLUENCE OF TIDAL HEATING ON THE CHEMISTRY , 2013, 1312.3007.

[35]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[36]  Lothar Frommhold,et al.  Collision-induced infrared spectra of H2-He pairs involving 0-1 vibrational transitions and temperatures from 18 to 7000 K , 1989 .

[37]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[38]  I. Dobbs-Dixon,et al.  Atmospheric Dynamics of Short-Period Extrasolar Gas Giant Planets. I. Dependence of Nightside Temperature on Opacity , 2007, 0704.3269.

[39]  U. Jørgensen,et al.  High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres , 2001 .

[40]  T. Guillot,et al.  A non-grey analytical model for irradiated atmospheres - II. Analytical vs. numerical solutions , 2013, 1311.6322.

[41]  Martin Kürster,et al.  Detection of CO absorption in the atmosphere of the hot Jupiter HD 189733b , 2013 .

[42]  K. Menou,et al.  THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION MODELS OF HD 189733b AND HD 209458b WITH CONSISTENT MAGNETIC DRAG AND OHMIC DISSIPATION , 2012, 1208.2274.

[43]  T. Barman,et al.  The physical properties of extra-solar planets , 2010, 1001.3577.

[44]  W. C. Bowman,et al.  SPITZER IRAC SECONDARY ECLIPSE PHOTOMETRY OF THE TRANSITING EXTRASOLAR PLANET HAT-P-1b , 2009, 0911.2218.

[45]  Hasse Fredriksson,et al.  Properties of Gases , 2008 .

[46]  Gautam Vasisht,et al.  A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.

[47]  R. Jindra,et al.  PHOTODETACHMENT AS A DESTRUCTION MECHANISM FOR CN− AND C3N− ANIONS IN CIRCUMSTELLAR ENVELOPES , 2013, 1307.2709.

[48]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[49]  K. Menou,et al.  THE ROLE OF DRAG IN THE ENERGETICS OF STRONGLY FORCED EXOPLANET ATMOSPHERES , 2011, 1105.2321.

[50]  Adam Burrows,et al.  PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS , 2010, 1005.0346.

[51]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[52]  David Charbonneau,et al.  THE 8 μm PHASE VARIATION OF THE HOT SATURN HD 149026b , 2009, 0908.1977.

[53]  A. Borysow,et al.  Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K , 2002 .

[54]  M. Marley,et al.  Atmospheric Circulation of Hot Jupiters: Three-dimensional Circulation Models of HD 209458b and HD 189733b with Simplified Forcing , 2008, 0802.0327.

[55]  M. Kuntz,et al.  A new implementation of the Humlicek algorithm for the calculation of the Voigt profile function , 1997 .

[56]  Yuk L. Yung,et al.  High-temperature Photochemistry in the Atmosphere of HD 189733b , 2010 .

[57]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[58]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[59]  G. Vasisht,et al.  THERMOCHEMICAL AND PHOTOCHEMICAL KINETICS IN COOLER HYDROGEN-DOMINATED EXTRASOLAR PLANETS: A METHANE-POOR GJ436b? , 2011, 1104.3183.

[60]  Caltech,et al.  Probing the haze in the atmosphere of HD 189733b with HST/WFC3 transmission spectroscopy , 2012, 1201.6573.

[61]  Lothar Frommhold,et al.  Collision-induced infrared spectra of H2-He pairs at temperatures from 18 to 7000 K. II - Overtone and hot bands , 1989 .

[62]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[63]  D. Ehrenreich,et al.  SEARCH FOR CARBON MONOXIDE IN THE ATMOSPHERE OF THE TRANSITING EXOPLANET HD 189733b , 2009, 0903.3405.

[64]  R. Kuschnig,et al.  WATER, METHANE, AND CARBON DIOXIDE PRESENT IN THE DAYSIDE SPECTRUM OF THE EXOPLANET HD 209458b , 2009, 0908.4010.

[65]  Patrick G. J. Irwin,et al.  Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy , 2011, 1110.2934.

[66]  J. Dufresne,et al.  Net exchange parameterization of thermal infrared radiative transfer in Venus' atmosphere , 2009 .

[67]  Joseph L. Hora,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THERMAL EMISSION OF EXOPLANET XO-1B , 2022 .

[68]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[69]  Curtis S. Cooper,et al.  Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter Atmospheres, with Application to HD 209458b , 2006 .

[70]  G. Hebrard,et al.  Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS , 2009, 0907.4991.

[71]  A. P. Showman,et al.  The Influence of Atmospheric Dynamics on the Infrared Spectra and Light Curves of Hot Jupiters , 2006 .

[72]  D. Ehrenreich,et al.  TiO and VO broad band absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD 209458b , 2008, 0809.1865.

[73]  Nicolas B. Cowan,et al.  Inverting Phase Functions to Map Exoplanets , 2008, 0803.3622.

[74]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[75]  M. Marley,et al.  THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF HOT JUPITERS ON HIGHLY ECCENTRIC ORBITS , 2010, 1208.3795.

[76]  S. Seager,et al.  On Signatures of Atmospheric Features in Thermal Phase Curves of Hot Jupiters , 2007, 0712.2242.

[77]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[78]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[79]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[80]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[81]  E. Agol,et al.  THE IMPACT OF CIRCUMPLANTARY JETS ON TRANSIT SPECTRA AND TIMING OFFSETS FOR HOT JUPITERS , 2011, 1110.4377.

[82]  Jonathan Tennyson,et al.  Water in the atmosphere of HD 209458b from 3.6–8 μm IRAC photometric observations in primary transit , 2010 .

[83]  I. Ribas,et al.  Estimation of the XUV radiation onto close planets and their evaporation , 2011, 1105.0550.

[84]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets - III. Additional planets and stellar models , 2010, 1006.4443.

[85]  A. Showman,et al.  3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b , 2013, 1301.4522.

[86]  James F. Kasting,et al.  A PHOTOCHEMICAL MODEL FOR THE CARBON-RICH PLANET WASP-12b , 2011, 1110.2793.

[87]  Joseph L. Hora,et al.  THERMAL EMISSION AND TIDAL HEATING OF THE HEAVY AND ECCENTRIC PLANET XO-3b , 2010, 1001.2319.

[88]  Kevin Heng,et al.  Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers , 2010, 1010.1257.

[89]  Siegfried Bauer,et al.  Physics of Planetary Ionospheres , 1973 .

[90]  M. Vardya,et al.  The Rayleigh Scattering Cross-Sections of He, C, N and O , 1969 .

[91]  Kristen Menou,et al.  MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS , 2010, 1003.3838.

[92]  Ernest Hilsenrath,et al.  Solar irradiance reference spectra for two solar active levels , 2004 .

[93]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[94]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[95]  Nicolas B. Cowan,et al.  A MODEL FOR THERMAL PHASE VARIATIONS OF CIRCULAR AND ECCENTRIC EXOPLANETS , 2010, 1011.0428.

[96]  K. Heng,et al.  Atmospheric circulation of tidally locked exoplanets: II. Dual-band radiative transfer and convective adjustment , 2011, 1105.4065.

[97]  S. Seager,et al.  A NEW 24 μm PHASE CURVE FOR υ ANDROMEDAE b , 2010, 1008.0393.

[98]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[99]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[100]  S. Seager,et al.  Atmospheric Circulation of Close-In Extrasolar Giant Planets. I. Global, Barotropic, Adiabatic Simulations , 2006, astro-ph/0607338.

[101]  Drake Deming,et al.  3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b , 2012, 1206.6887.

[102]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[103]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.