Equiaxed dendritic solidification with convection: Part I. Multiscale/multiphase modeling

Equiaxed dendritic solidification in the presence of melt convection and solid-phase transport is investigated in a series of three articles. In part I, a multiphase model is developed to predict com-position and structure evolution in an alloy solidifying with an equiaxed morphology. The model accounts for the transport phenomena occurring on the macroscopic (system) scale, as well as the grain nucleation and growth mechanisms taking place over various microscopic length scales. The present model generalizes a previous multiscale/multiphase model by including liquid melt convec-tion and solid-phase transport. The macroscopic transport equations for the solid and the interdendritic and extradendritic liquid phases are derived using the volume averaging technique and closed by supplementary relations to describe the interfacial transfer terms. In part II, a numerical application of the model to equiaxed dendritic solidification of an Al-Cu alloy in a rectangular cavity is dem-onstrated. Limited experimental validation of the model using a NH4C1-H2O transparent model alloy is provided in part III.

[1]  Pradeep K. Agarwal,et al.  Transport phenomena in multi-particle systems—II. Particle-fluid heat and mass transfer , 1988 .

[2]  P. Weidman,et al.  Calculation of dendrite settling velocities using a porous envelope , 1993 .

[3]  R. Smith,et al.  Dynamic simulation of crystal growth by Monte Carlo method—II. Ingot microstructures , 1992 .

[4]  L. Arnberg,et al.  Determination of dendritic coherency in solidifying melts by rheological measurements , 1993 .

[5]  C. Beckermann,et al.  Multiparticle interfacial drag in equiaxed solidification , 1995 .

[6]  R. Ananth,et al.  Self-consistent theory of dendritic growth with convection , 1991 .

[7]  J. A. Spittle,et al.  Computer simulation of grain growth and macrostructure development during solidification , 1989 .

[8]  M. Rappaz,et al.  Solute diffusion model for equiaxed dendritic growth , 1987 .

[9]  Christoph Beckermann,et al.  A unified solute diffusion model for columnar and equiaxed dendritic alloy solidification , 1993 .

[10]  Chaoyang Wang,et al.  A multiphase solute diffusion model for dendritic alloy solidification , 1993, Metallurgical and Materials Transactions A.

[11]  Merton C. Flemings,et al.  Behavior of metal alloys in the semisolid state , 1991 .

[12]  M. Rappaz,et al.  Modelling of microstructure formation in solidification processes , 1989 .

[13]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[14]  Robert H. Davis Microhydrodynamics of particulate: Suspensions , 1993 .

[15]  Michel Rappaz,et al.  Modeling of casting, welding and advanced solidification processes-V : proceedings of the fifth International Conference on Modeling of Casting and Welding Processes, held in Davos Switzerland, September 16-21, 1990 , 1991 .

[16]  Martin E. Glicksman,et al.  Dendritic growth into undercooled alloy metals , 1984 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Martin E. Glicksman,et al.  Overview 12: Fundamentals of dendritic solidification—I. Steady-state tip growth , 1981 .

[19]  I. Krieger,et al.  Rheology of monodisperse latices , 1972 .

[20]  J. Ni,et al.  A volume-averaged two-phase model for transport phenomena during solidification , 1991 .

[21]  J.-L. Desbiolles,et al.  Modeling of equiaxed microstructure formation in casting , 1989 .

[22]  P. Adler Streamlines in and around porous particles , 1981 .

[23]  Doru M. Stefanescu,et al.  Heat transfer-solidification kinetics modeling of solidification of castings , 1990 .

[24]  Christoph Beckermann,et al.  Prediction of Columnar to Equiaxed Transition during Diffusion-Controlled Dendritic Alloy Solidification , 1994 .

[25]  C. Gandin,et al.  Probabilistic modelling of microstructure formation in solidification processes , 1993 .

[26]  P. Carman,et al.  Flow of gases through porous media , 1956 .