Continuous-wave laser-assisted injection of single magnetic nanobeads into living cells

Abstract Fast and effective transportation of beads/molecules into living cells with high cell viability is essential for drug development and cell biology. This study presents a new approach of injecting single magnetic nanobeads with low surface temperature into living cells using a continuous-wave laser. Experimental results demonstrate the successful injection of magnetic nanobeads into living cells with high injection rates reaching 100%, short injection times of about 1 s, and maximal cell survival rates of 100%.

[1]  G. Zeng,et al.  Use of iron oxide nanomaterials in wastewater treatment: a review. , 2012, The Science of the total environment.

[2]  M. Valentine,et al.  High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments. , 2012, The Review of scientific instruments.

[3]  C. Kumar,et al.  Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. , 2011, Advanced drug delivery reviews.

[4]  R. Garry,et al.  Sindbis virus infection decreases intracellular pH: alkaline medium inhibits processing of Sindbis virus polyproteins. , 1988, Virology.

[5]  R. Tiwari,et al.  Drug delivery systems: An updated review , 2012, International journal of pharmaceutical investigation.

[6]  C. Albanese,et al.  Magnetic nanobeads as potential contrast agents for magnetic resonance imaging. , 2013, ACS Nano.

[7]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[8]  Kenji Setoura,et al.  Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination. , 2013, ACS nano.

[9]  Taisuke Masuda,et al.  Vibration-assisted optical injection of a single fluorescent sensor into a target cell , 2015 .

[10]  Zhenpeng Qin,et al.  Thermophysical and biological responses of gold nanoparticle laser heating. , 2012, Chemical Society reviews.

[11]  Vladimir P Torchilin,et al.  Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. , 2006, Annual review of biomedical engineering.

[12]  Chun-Sing Lee,et al.  Micro- and nanotechnologies for intracellular delivery. , 2014, Small.

[13]  Andreas Offenhäusser,et al.  Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads. , 2015, The Review of scientific instruments.

[14]  Majid Minary-Jolandan,et al.  Nanofountain probe electroporation (NFP-E) of single cells. , 2013, Nano letters.

[15]  F. Arai,et al.  Multi-fluorescent micro-sensor for accurate measurement of pH and temperature variations in micro-environments , 2014 .

[16]  N. Kotov,et al.  Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles. , 2015, Small.

[17]  R. Naik,et al.  Investigation of magnetic properties of Fe3O4 nanoparticles using temperature dependent magnetic hyperthermia in ferrofluids , 2014 .

[18]  Kevin Braeckmans,et al.  Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. , 2014, ACS nano.

[19]  Charles R. Sullivan,et al.  Limits of localized heating by electromagnetically excited nanoparticles , 2006 .

[20]  A. Yang,et al.  Proapoptotic DR4 and DR5 signaling in cancer cells: toward clinical translation. , 2010, Current opinion in cell biology.

[21]  Qingguo Xie,et al.  A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles , 2012, Nanotechnology.

[22]  V. Torchilin Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery , 2014, Nature Reviews Drug Discovery.

[23]  Robert Langer,et al.  Small-scale systems for in vivo drug delivery , 2003, Nature Biotechnology.

[24]  Muhammad Waleed,et al.  Single-cell optoporation and transfection using femtosecond laser and optical tweezers. , 2013, Biomedical optics express.

[25]  S. Prusiner,et al.  Thermodynamic Considerations of Mammalian Thermogenesis , 1968, Nature.

[26]  Halina Rubinsztein-Dunlop,et al.  Laser trapping of colloidal metal nanoparticles. , 2015, ACS nano.

[27]  G. Zeng,et al.  An electrochemical DNA sensor based on a layers-film construction modified electrode. , 2011, The Analyst.

[28]  Vinod Subramaniam,et al.  Direct observation of nanomechanical properties of chromatin in living cells. , 2007, Nano letters.

[29]  W. Stark,et al.  Palladium Nanoparticles Supported on Magnetic Carbon‐Coated Cobalt Nanobeads: Highly Active and Recyclable Catalysts for Alkene Hydrogenation , 2014 .

[30]  Y. Harada,et al.  Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy , 2012, Nature Communications.

[31]  Günter Reiss,et al.  Magnetic tweezers for manipulation of magnetic particles in single cells , 2014 .

[32]  Shashi K Murthy,et al.  Fundamentals and application of magnetic particles in cell isolation and enrichment: a review , 2015, Reports on progress in physics. Physical Society.

[33]  Oliver T. Bruns,et al.  A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. , 2009, Nano letters.

[34]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[35]  A. Hay,et al.  Regulation of pH by the M2 protein of influenza A viruses. , 1992, Virus research.

[36]  S. K. Powers,et al.  Toxicity of photodynamic therapy with photofrin in the normal rat brain , 1994, Lasers in surgery and medicine.

[37]  Fumihito Arai,et al.  Multi-beam bilateral teleoperation of holographic optical tweezers. , 2012, Optics express.

[38]  C. Bertozzi,et al.  A cell nanoinjector based on carbon nanotubes , 2007, Proceedings of the National Academy of Sciences.

[39]  E. Aboagye,et al.  Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. , 2013, Chemical Society reviews.

[40]  S. W. Kim,et al.  Degradable polymeric carrier for the delivery of IL-10 plasmid DNA to prevent autoimmune insulitis of NOD mice , 2000, Gene Therapy.

[41]  Romain Quidant,et al.  Mapping intracellular temperature using green fluorescent protein. , 2012, Nano letters.

[42]  D. Bull,et al.  Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium , 2003, Gene Therapy.

[43]  C. Bárcena,et al.  APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE , 2003 .

[44]  S. Iossa,et al.  Light mitochondria and cellular thermogenesis. , 1988, Biochemical and biophysical research communications.

[45]  Michael R Hamblin,et al.  Physical energy for drug delivery; poration, concentration and activation. , 2014, Advanced drug delivery reviews.

[46]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[47]  G. Zeng,et al.  A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. , 2007, Biosensors & bioelectronics.

[48]  L. Oddershede,et al.  Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. , 2010, ACS nano.

[49]  Bing Xu,et al.  Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. , 2009, Accounts of chemical research.

[50]  Shubiao Zhang,et al.  Cationic liposomes as carriers for gene delivery: Physico-chemical characterization and mechanism of cell transfection , 2012 .

[51]  Johannes S Kanger,et al.  UvA-DARE ( Digital Academic Repository ) Micro magnetic tweezers for nanomanipulation inside live cells , 2005 .

[52]  David A. Dean Cell-Specific Targeting Strategies for Electroporation-Mediated Gene Delivery in Cells and Animals , 2013, The Journal of Membrane Biology.

[53]  Theobald Lohmüller,et al.  Optical injection of gold nanoparticles into living cells. , 2015, Nano letters.

[54]  Marek Romanowski,et al.  Focal Activation of Cells by Plasmon Resonance Assisted Optical Injection of Signaling Molecules , 2014, ACS nano.

[55]  Tom Pfeiffer,et al.  Single-step injection of gold nanoparticles through phospholipid membranes. , 2011, ACS nano.

[56]  Renzo Antolini,et al.  Optical micromanipulations inside yeast cells. , 2005, Applied optics.

[57]  Karoly Jakab,et al.  Magnetic tweezers for intracellular applications , 2003 .

[58]  Liwei Lin,et al.  Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. , 2011, ACS nano.