Estimating the error distribution function in semiparametric regression

We prove a stochastic expansion for a residual-based estimator of the error distribution function in a partly linear regression model. It implies a functional central limit theorem. As special cases we cover nonparametric, nonlinear and linear regression models.

[1]  H. Koul,et al.  Weak convergence of the residual empirical process in explosive autoregression , 1989 .

[2]  M. Akritas,et al.  Non‐parametric Estimation of the Residual Distribution , 2001 .

[3]  P. Bickel,et al.  Non- and semiparametric statistics: compared and contrasted , 2000 .

[4]  R. Loynes The Empirical Distribution Function of Residuals from Generalised Regression , 1980 .

[5]  G. Shorack Empirical and rank processes of observations and residuals , 1984 .

[6]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[7]  E. Mammen Empirical process of residuals for high-dimensional linear models , 1996 .

[8]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[9]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[10]  Asymptotic Behavior of Wilcoxon Type Confidence Regions in Multiple Linear Regression , 1969 .

[11]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[12]  Anton Schick,et al.  Root-n consistent estimation in partly linear regression models☆ , 1996 .

[13]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[14]  H. Koul Some Convergence Theorems for Ranks and Weighted Empirical Cumulatives , 1970 .

[15]  W. Rudin Real and complex analysis , 1968 .

[16]  C. Carter,et al.  A Comparison of Variance Estimators in Nonparametric Regression , 1992 .

[17]  H. Koul Weighted Empirical Processes in Dynamic Nonlinear Models , 2002 .

[18]  W. Wefelmeyer,et al.  Estimating functionals of the error distribution in parametric and nonparametric regression , 2004 .

[19]  E. Giné,et al.  Limit Theorems for $U$-Processes , 1993 .

[20]  J. Marron,et al.  On variance estimation in nonparametric regression , 1990 .

[21]  Anton Schick,et al.  Estimating the error variance in nonparametric regression by a covariate-matched u-statistic , 2003 .

[22]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[23]  Anton Schick,et al.  Estimating the Innovation Distribution in Nonlinear Autoregressive Models , 2002 .

[24]  Holger Dette,et al.  Estimating the variance in nonparametric regression—what is a reasonable choice? , 1998 .

[25]  M. Ossiander,et al.  A Central Limit Theorem Under Metric Entropy with $L_2$ Bracketing , 1987 .

[26]  Hein Putter,et al.  UvA-DARE ( Digital Academic Repository ) Efficient Estimation of Banach Parameters in Semiparametric Models , 2005 .

[27]  P. Bickel,et al.  Nonparametric estimators which can be "plugged-in" , 2003 .

[28]  Wolfgang Wefelmeyer,et al.  WEIGHTED RESIDUAL-BASED DENSITY ESTIMATORS FOR NONLINEAR AUTOREGRESSIVE MODELS , 2005 .

[29]  Natalie Neumeyer,et al.  Testing independence in nonparametric regression , 2009, J. Multivar. Anal..

[30]  B. Silverman,et al.  Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives , 1978 .

[31]  N. Neumeyer,et al.  Empirical likelihood estimators for the error distribution in nonparametric regression models , 2008 .

[32]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[33]  J. Bai,et al.  Testing for Parameter Constancy in Linear Regressions: An Empirical Distribution Function Approach , 1996 .

[34]  Anton Schick,et al.  Estimating linear functionals of the error distribution in nonparametric regression , 2004 .