CCN activation of oxalic and malonic acid test aerosols with the University of Vienna cloud condensation nuclei counter

[1]  F. Joos,et al.  A field study on chemistry, S(IV) oxidation rates and vertical transport during fog conditions , 1991 .

[2]  H. Gerber,et al.  Experimental Verification of the Theoretical Relationship Between Size and Critical Supersaturation of Salt Nuclei , 1977 .

[3]  H. Khwaja,et al.  Chemical characterization of three summer cloud episodes at whiteface mountain , 1995 .

[4]  G. Vali,et al.  A balloon-borne cloud condensation nuclei counter , 1998 .

[5]  J. Seinfeld,et al.  A theoretical analysis of cloud condensation nucleus (CCN) instruments , 2001 .

[6]  A. Kasper-Giebl,et al.  Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to organic carbon in cloud water , 2002 .

[7]  D. L. Roberts,et al.  A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols , 1994, Nature.

[8]  M. Rood,et al.  Influence of Soluble Surfactant Properties on the Activation of Aerosol Particles Containing Inorganic Solute , 1998 .

[9]  T. L. Wolfe,et al.  An assessment of the impact of pollution on global cloud albedo , 1984 .

[10]  C. Corrigan,et al.  Cloud condensation nucleus activity of organic compounds : a laboratory study , 1999 .

[11]  A. Kasper-Giebl,et al.  Black carbon and other species at a high‐elevation European site (Mount Sonnblick, 3106 m, Austria): Concentrations and scavenging efficiencies , 2000 .

[12]  W. Wieland Die Wasserdampfkondensation an natürlichem Aerosol bei geringen Übersättigungen , 1956 .

[13]  T. Hashimoto,et al.  Penetration of ultrafine particles and ion clusters through wire screens , 1995 .

[14]  J. Mäkelä,et al.  Ultrafine particle charging probabilities in the size range below 10 nm , 1995 .

[15]  J. Hudson,et al.  Cloud droplet nucleation and cloud scavenging of aerosol sulphate in polluted atmospheres , 1986 .

[16]  S. Larson,et al.  Contribution of carbonaceous material to cloud condensation nuclei concentrations in European background (Mt. Sonnblick) and urban (Vienna) aerosols , 1999 .

[17]  R. Synovec,et al.  Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets , 1996 .

[18]  U. Baltensperger,et al.  Study on the Chemical Character of Water Soluble Organic Compounds in Fine Atmospheric Aerosol at the Jungfraujoch , 2001 .

[19]  A. Kasper-Giebl,et al.  Scavenging Efficiency of ‘Aerosol Carbon’ and Sulfate in Supercooled Clouds at Mt. Sonnblick (3106 m a.s.l., Austria) , 2000 .

[20]  J. Hudson Cloud Condensation Nuclei , 1993 .

[21]  J. Haywood,et al.  The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget , 1995 .

[22]  S. Pandis,et al.  A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei , 1997 .

[23]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[24]  A. Kasper-Giebl,et al.  The performance of a gas and aerosol monitoring system (GAMS) for the determination of acidic water soluble organic and inorganic gases and ammonia as well as related particles from the atmosphere , 2001 .

[25]  R. Toumi,et al.  Water nucleation on aerosol particles containing both organic and soluble inorganic substances , 1998 .

[26]  D. J. Alofs,et al.  Nucleation Experiments with Monodisperse NaCl Aerosols , 1979 .

[27]  J. Penner,et al.  Large contribution of organic aerosols to cloud-condensation-nuclei concentrations , 1993, Nature.

[28]  J. Smolík,et al.  Calculation of transient supersaturation in the thermal diffusion cloud chamber at measurements of supersaturation spectrum of cloud condensation nuclei , 1982 .

[29]  M. Facchini,et al.  Partitioning of the organic aerosol component between fog droplets and interstitial air , 1998 .

[30]  J. Mäkelä,et al.  Closed-loop arrangement with critical orifice for DMA sheath/excess flow system , 1997 .

[31]  G. Reischl Measurement of Ambient Aerosols by the Differential Mobility Analyzer Method: Concepts and Realization Criteria for the Size Range Between 2 and 500 nm , 1991 .

[32]  G. Reischl,et al.  Bipolar charging of ultrafine particles in the size range below 10 nm , 1996 .

[33]  A. Limbeck,et al.  Dependence of in-cloud scavenging of polar organic aerosol compounds on the water solubility , 2000 .