J-Orthogonal Matrices: Properties and Generation

A real, square matrix Q is J-orthogonal if QTJQ = J, where the signature matrix $J = \diag(\pm 1)$. J-orthogonal matrices arise in the analysis and numerical solution of various matrix problems involving indefinite inner products, including, in particular, the downdating of Cholesky factorizations. We present techniques and tools useful in the analysis, application, and construction of these matrices, giving a self-contained treatment that provides new insights. First, we define and explore the properties of the exchange operator, which maps J-orthogonal matrices to orthogonal matrices and vice versa. Then we show how the exchange operator can be used to obtain a hyperbolic CS decomposition of a J-orthogonal matrix directly from the usual CS decomposition of an orthogonal matrix. We employ the decomposition to derive an algorithm for constructing random J-orthogonal matrices with specified norm and condition number. We also give a short proof of the fact that J-orthogonal matrices are optimally scaled und...

[1]  G. Schulz Iterative Berechung der reziproken Matrix , 1933 .

[2]  A. Hoffman,et al.  Some metric inequalities in the space of matrices , 1955 .

[3]  V. Potapov The multiplicative structure of J-contractive matrix functions , 1960 .

[4]  R. Duffin,et al.  Network Synthesis Through Hybrid Matrices , 1966 .

[5]  G. Golub,et al.  On a Characterization of the Best $l_2 $-Scaling of a matrix , 1974 .

[6]  J. Goodnight A Tutorial on the SWEEP Operator , 1979 .

[7]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[8]  A. Bunse-Gerstner An analysis of the HR algorithm for computing the eigenvalues of a matrix , 1981 .

[9]  M. A. Brebner,et al.  Eigenvalues of Ax = λBx for real symmetric matrices A and B computed by reduction to a pseudosymmetric form and the HR process , 1982 .

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  N. Higham Computing the polar decomposition with applications , 1986 .

[12]  N. Higham Computing real square roots of a real matrix , 1987 .

[13]  N. Higham MATRIX NEARNESS PROBLEMS AND APPLICATIONS , 1989 .

[14]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[15]  Nicholas J. Higham,et al.  Fast Polar Decomposition of an Arbitrary Matrix , 1990, SIAM J. Sci. Comput..

[16]  Alan J. Laub,et al.  On Scaling Newton's Method for Polar Decomposition and the Matrix Sign Function , 1990, 1990 American Control Conference.

[17]  Robert J. Plemmons,et al.  Least squares modifications with inverse factorizations: Parallel implications , 1989 .

[18]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[19]  A. Laub,et al.  Rational iterative methods for the matrix sign function , 1991 .

[20]  K. Veselié A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .

[21]  A. Steinhardt,et al.  Existence of the hyperbolic singular value decomposition , 1993 .

[22]  C. Paige,et al.  History and generality of the CS decomposition , 1994 .

[23]  L. Rodman,et al.  Polar decompositions in finite dimensional indefinite scalar product spaces: General theory , 1997 .

[24]  W. J. FitzgeraldApril A Fast Method for Variable Selection in the General Linear Model , 1997 .

[25]  G. Stewart,et al.  On Hyperbolic Triangularization: Stability and Pivoting , 1998, SIAM J. Matrix Anal. Appl..

[26]  M. Tsatsomeros Principal pivot transforms: properties and applications , 1998, math/9807132.

[27]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[28]  Ming Gu,et al.  A Stable and Efficient Algorithm for the Indefinite Linear Least-Squares Problem , 1999, SIAM J. Matrix Anal. Appl..

[29]  V. Mehrmann,et al.  Structured Jordan canonical forms for structured matrices that are hermitian, skew hermitian or unitary with respect to indefinite inner products , 1999 .

[30]  A. Steinhardt,et al.  Unifying unitary and hyperbolic transformations , 2000 .

[31]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[32]  F. Leite,et al.  Extending Results from Orthogonal Matrices to the Class of P-orthogonal Matrices , 2002 .

[33]  F. Tisseur,et al.  G-Reflectors in Scalar Product Spaces ¤ , 2003 .

[34]  Nicholas J. Higham,et al.  Solving the Indefinite Least Squares Problem by Hyperbolic QR Factorization , 2002, SIAM J. Matrix Anal. Appl..

[35]  F. Tisseur,et al.  STRUCTURED TOOLS FOR STRUCTURED MATRICES , 2003 .

[36]  F. Leite,et al.  Computing the square root and logarithm of real P -orthogonal matrix , 2003 .

[37]  F. Tisseur,et al.  G-Reflectors: Analogues of Householder Transformations in Scalar Product Spaces , 2004 .

[38]  Nicholas J. Higham,et al.  Stable iterations for the matrix square root , 1997, Numerical Algorithms.

[39]  Françoise Tisseur,et al.  Tridiagonal-Diagonal Reduction of Symmetric Indefinite Pairs , 2004, SIAM J. Matrix Anal. Appl..

[40]  Paul Van Dooren,et al.  Model reduction of state space systems via an implicitly restarted Lanczos method , 1996, Numerical Algorithms.

[41]  Paul Van Dooren,et al.  On the Factorization of Hyperbolic and Unitary Transformations into Rotations , 2005, SIAM J. Matrix Anal. Appl..