J-Orthogonal Matrices: Properties and Generation
暂无分享,去创建一个
[1] G. Schulz. Iterative Berechung der reziproken Matrix , 1933 .
[2] A. Hoffman,et al. Some metric inequalities in the space of matrices , 1955 .
[3] V. Potapov. The multiplicative structure of J-contractive matrix functions , 1960 .
[4] R. Duffin,et al. Network Synthesis Through Hybrid Matrices , 1966 .
[5] G. Golub,et al. On a Characterization of the Best $l_2 $-Scaling of a matrix , 1974 .
[6] J. Goodnight. A Tutorial on the SWEEP Operator , 1979 .
[7] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[8] A. Bunse-Gerstner. An analysis of the HR algorithm for computing the eigenvalues of a matrix , 1981 .
[9] M. A. Brebner,et al. Eigenvalues of Ax = λBx for real symmetric matrices A and B computed by reduction to a pseudosymmetric form and the HR process , 1982 .
[10] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[11] N. Higham. Computing the polar decomposition with applications , 1986 .
[12] N. Higham. Computing real square roots of a real matrix , 1987 .
[13] N. Higham. MATRIX NEARNESS PROBLEMS AND APPLICATIONS , 1989 .
[14] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[15] Nicholas J. Higham,et al. Fast Polar Decomposition of an Arbitrary Matrix , 1990, SIAM J. Sci. Comput..
[16] Alan J. Laub,et al. On Scaling Newton's Method for Polar Decomposition and the Matrix Sign Function , 1990, 1990 American Control Conference.
[17] Robert J. Plemmons,et al. Least squares modifications with inverse factorizations: Parallel implications , 1989 .
[18] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[19] A. Laub,et al. Rational iterative methods for the matrix sign function , 1991 .
[20] K. Veselié. A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .
[21] A. Steinhardt,et al. Existence of the hyperbolic singular value decomposition , 1993 .
[22] C. Paige,et al. History and generality of the CS decomposition , 1994 .
[23] L. Rodman,et al. Polar decompositions in finite dimensional indefinite scalar product spaces: General theory , 1997 .
[24] W. J. FitzgeraldApril. A Fast Method for Variable Selection in the General Linear Model , 1997 .
[25] G. Stewart,et al. On Hyperbolic Triangularization: Stability and Pivoting , 1998, SIAM J. Matrix Anal. Appl..
[26] M. Tsatsomeros. Principal pivot transforms: properties and applications , 1998, math/9807132.
[27] G. W. Stewart,et al. Matrix algorithms , 1998 .
[28] Ming Gu,et al. A Stable and Efficient Algorithm for the Indefinite Linear Least-Squares Problem , 1999, SIAM J. Matrix Anal. Appl..
[29] V. Mehrmann,et al. Structured Jordan canonical forms for structured matrices that are hermitian, skew hermitian or unitary with respect to indefinite inner products , 1999 .
[30] A. Steinhardt,et al. Unifying unitary and hyperbolic transformations , 2000 .
[31] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[32] F. Leite,et al. Extending Results from Orthogonal Matrices to the Class of P-orthogonal Matrices , 2002 .
[33] F. Tisseur,et al. G-Reflectors in Scalar Product Spaces ¤ , 2003 .
[34] Nicholas J. Higham,et al. Solving the Indefinite Least Squares Problem by Hyperbolic QR Factorization , 2002, SIAM J. Matrix Anal. Appl..
[35] F. Tisseur,et al. STRUCTURED TOOLS FOR STRUCTURED MATRICES , 2003 .
[36] F. Leite,et al. Computing the square root and logarithm of real P -orthogonal matrix , 2003 .
[37] F. Tisseur,et al. G-Reflectors: Analogues of Householder Transformations in Scalar Product Spaces , 2004 .
[38] Nicholas J. Higham,et al. Stable iterations for the matrix square root , 1997, Numerical Algorithms.
[39] Françoise Tisseur,et al. Tridiagonal-Diagonal Reduction of Symmetric Indefinite Pairs , 2004, SIAM J. Matrix Anal. Appl..
[40] Paul Van Dooren,et al. Model reduction of state space systems via an implicitly restarted Lanczos method , 1996, Numerical Algorithms.
[41] Paul Van Dooren,et al. On the Factorization of Hyperbolic and Unitary Transformations into Rotations , 2005, SIAM J. Matrix Anal. Appl..