Discovering gene re-ranking efficiency and conserved gene-gene relationships derived from gene co-expression network analysis on breast cancer data

[1]  Zhongming Zhao,et al.  Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes , 2016, Briefings Bioinform..

[2]  Chuang Liu,et al.  A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types , 2015, PLoS Comput. Biol..

[3]  J. Soh,et al.  Abstract 724: Anti-tumor effect of Dasatinib in HER2 positive breast cancer with Trastuzumab resistance , 2015 .

[4]  Jun Wang,et al.  Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients , 2015, Breast Cancer Research and Treatment.

[5]  J. Kanwar,et al.  YM155 down‐regulates survivin and XIAP, modulates autophagy and induces autophagy‐dependent DNA damage in breast cancer cells , 2015, British journal of pharmacology.

[6]  Yang Xie,et al.  Ensemble-Based Network Aggregation Improves the Accuracy of Gene Network Reconstruction , 2014, PloS one.

[7]  J. Kochanowicz,et al.  The Activity of Alcohol Dehydrogenase (ADH) Isoenzymes and Aldehyde Dehydrogenase (ALDH) in the Sera of Patients with Brain Cancer , 2014, Neurochemical Research.

[8]  Stephen W Duffy,et al.  Risk determination and prevention of breast cancer , 2014, Breast Cancer Research.

[9]  E. Wang,et al.  Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. , 2014, Seminars in cancer biology.

[10]  I. Amelio,et al.  Serine and glycine metabolism in cancer☆ , 2014, Trends in biochemical sciences.

[11]  M. McNutt,et al.  Estrogen receptor α-coupled Bmi1 regulation pathway in breast cancer and its clinical implications , 2014, BMC Cancer.

[12]  T. Yen,et al.  Using a cell line breast cancer progression system to identify biomarker candidates. , 2014, Journal of proteomics.

[13]  P. Smolewski,et al.  Clofarabine, a novel adenosine analogue, reactivates DNA methylation-silenced tumour suppressor genes and inhibits cell growth in breast cancer cells. , 2014, European journal of pharmacology.

[14]  S. Gabriel,et al.  Pan-cancer patterns of somatic copy-number alteration , 2013, Nature Genetics.

[15]  Li Li,et al.  The Antihelmintic Drug Pyrvinium Pamoate Targets Aggressive Breast Cancer , 2013, PloS one.

[16]  Gary D. Bader,et al.  GeneMANIA Prediction Server 2013 Update , 2013, Nucleic Acids Res..

[17]  Edward Y. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[18]  T. M. Murali,et al.  Reconciling differential gene expression data with molecular interaction networks , 2013, Bioinform..

[19]  H. Redmond,et al.  Links between Toll-like receptor 4 and breast cancer , 2013, Oncoimmunology.

[20]  Yusuke Nakamura,et al.  Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis. , 2013, International journal of oncology.

[21]  Emmanouil Athanasiadis,et al.  ChemBioServer: a web-based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery , 2012, Bioinform..

[22]  Jinchang Wu,et al.  Activation of Peroxisome Proliferator-activated Receptor α (PPARα) Suppresses Hypoxia-inducible Factor-1α (HIF-1α) Signaling in Cancer Cells* , 2012, The Journal of Biological Chemistry.

[23]  Y. Chen,et al.  PPAR signaling pathway may be an important predictor of breast cancer response to neoadjuvant chemotherapy , 2012, Cancer Chemotherapy and Pharmacology.

[24]  Yang Xiang,et al.  Weighted Frequent Gene Co-expression Network Mining to Identify Genes Involved in Genome Stability , 2012, PLoS Comput. Biol..

[25]  M. Gealt,et al.  Wortmannin induces MCF-7 breast cancer cell death via the apoptotic pathway, involving chromatin condensation, generation of reactive oxygen species, and membrane blebbing. , 2012, Breast cancer.

[26]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[27]  Chuang Liu,et al.  Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference , 2012, PLoS Comput. Biol..

[28]  C. Heckler,et al.  Differential expression of cytokines in breast cancer patients receiving different chemotherapies: implications for cognitive impairment research , 2012, Supportive Care in Cancer.

[29]  Peng Yuan,et al.  Oral etoposide monotherapy is effective for metastatic breast cancer with heavy prior therapy. , 2012, Chinese medical journal.

[30]  Galina V. Glazko,et al.  Statistical Inference and Reverse Engineering of Gene Regulatory Networks from Observational Expression Data , 2012, Front. Gene..

[31]  Oliver Fiehn,et al.  Integration of metabolomics and expression of glycerol-3-phosphate acyltransferase (GPAM) in breast cancer-link to patient survival, hormone receptor status, and metabolic profiling. , 2012, Journal of proteome research.

[32]  Gabriele Sales,et al.  parmigene - a parallel R package for mutual information estimation and gene network reconstruction , 2011, Bioinform..

[33]  G. Altay,et al.  Structural influence of gene networks on their inference: analysis of C3NET. , 2011 .

[34]  Yves Moreau,et al.  PINTA: a web server for network-based gene prioritization from expression data , 2011, Nucleic Acids Res..

[35]  M. Moasser,et al.  A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer , 2011, British Journal of Cancer.

[36]  L. Hutchinson,et al.  Breast cancer: Challenges, controversies, breakthroughs , 2010, Nature Reviews Clinical Oncology.

[37]  G. Hortobagyi,et al.  Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells , 2010, Breast Cancer Research.

[38]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[39]  Frank Emmert-Streib,et al.  Inferring the conservative causal core of gene regulatory networks , 2010, BMC Systems Biology.

[40]  Antony J. Williams,et al.  ChemSpider:: An Online Chemical Information Resource , 2010 .

[41]  R. Spielman,et al.  expression reveals gene interactions and functions Coexpression network based on natural variation in human gene Material , 2009 .

[42]  Anne-Laure Boulesteix,et al.  Regularized estimation of large-scale gene association networks using graphical Gaussian models , 2009, BMC Bioinformatics.

[43]  Jing Chen,et al.  Disease candidate gene identification and prioritization using protein interaction networks , 2009, BMC Bioinformatics.

[44]  J. Welsh,et al.  Antiproliferative action of menadione and 1,25(OH)2D3 on breast cancer cells , 2009, The Journal of Steroid Biochemistry and Molecular Biology.

[45]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[46]  Gianluca Bontempi,et al.  minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information , 2008, BMC Bioinformatics.

[47]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[48]  Simo V. Zhang,et al.  A map of human cancer signaling , 2007, Molecular systems biology.

[49]  K. Gunsalus,et al.  Network modeling links breast cancer susceptibility and centrosome dysfunction. , 2007, Nature genetics.

[50]  Korbinian Strimmer,et al.  From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data , 2007, BMC Systems Biology.

[51]  Kevin Kontos,et al.  Information-Theoretic Inference of Large Transcriptional Regulatory Networks , 2007, EURASIP J. Bioinform. Syst. Biol..

[52]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[53]  Paul A Clemons,et al.  The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease , 2006, Science.

[54]  J. Shih,et al.  Estrogen-related receptors-stimulated monoamine oxidase B promoter activity is down-regulated by estrogen receptors. , 2006, Molecular endocrinology.

[55]  R. Talamini,et al.  Innovative schedule of oral idarubicin in elderly patients with metastatic breast cancer: comprehensive results of a phase II multi-institutional study with pharmacokinetic drug monitoring. , 2006, Annals of oncology : official journal of the European Society for Medical Oncology.

[56]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[57]  M Ingelman-Sundberg,et al.  Cytochrome P450 pharmacogenetics and cancer , 2006, Oncogene.

[58]  David S. Wishart,et al.  DrugBank: a comprehensive resource for in silico drug discovery and exploration , 2005, Nucleic Acids Res..

[59]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[60]  F. Stanczyk,et al.  Selective Loss of AKR1C1 and AKR1C2 in Breast Cancer and Their Potential Effect on Progesterone Signaling , 2004, Cancer Research.

[61]  Carsten O. Daub,et al.  Estimating mutual information using B-spline functions – an improved similarity measure for analysing gene expression data , 2004, BMC Bioinformatics.

[62]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[63]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[64]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  J. Winstanley,et al.  Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. , 2002, Cancer research.

[66]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[67]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[68]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[69]  小松 正人 Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis , 2013 .

[70]  L. Wang,et al.  Wortmannin inhibits proliferation and induces apoptosis of MCF-7 breast cancer cells. , 2012, European journal of gynaecological oncology.

[71]  M. Zhan,et al.  Exploring pathways from gene co-expression to network dynamics. , 2009, Methods in molecular biology.

[72]  Jiawei Han,et al.  Mining coherent dense subgraphs across massive biological networks for functional discovery , 2005, ISMB.

[73]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..