Effective team strategies using dynamic scripting

Forming effective team strategies using heterogeneous agents to accomplish a task can be a challenging problem. The number of combinations of actions to look through can be enormous, and having an agent that is really good at a particular sub-task is no guarantee that agent will perform well on a team with members with different abilities. Dynamic Scripting has been shown to be an effective way of improving behaviours with adaptive game AI. We present an approach that modifies the scripting process to account for the other agents in a game. By analyzing an agent's allies and opponents we can create better starting scripts for the agents to use. Creating better starting points for the Dynamic Scripting process and will minimize the number of iterations needed to learn effective strategies, creating a better overall gaming experience.

[1]  Steve Rabin,et al.  AI Game Programming Wisdom , 2002 .

[2]  Adnan Darwiche,et al.  Inference in belief networks: A procedural guide , 1996, Int. J. Approx. Reason..

[3]  L. Mosley,et al.  The World Is Flat: A Brief History of the Twenty-First Century , 2005 .

[4]  Toby Walsh,et al.  Preferences in Constraint Satisfaction and Optimization , 2008, AI Mag..

[5]  Marie desJardins,et al.  Agent-organized networks for dynamic team formation , 2005, AAMAS '05.

[6]  Eugene Charniak,et al.  Bayesian Networks without Tears , 1991, AI Mag..

[7]  Duane Szafron,et al.  Code Generation for AI Scripting in Computer Role-Playing Games , 2004 .

[8]  Nicholas R. Jennings,et al.  An integrated trust and reputation model for open multi-agent systems , 2006, Autonomous Agents and Multi-Agent Systems.

[9]  Duane Szafron,et al.  Learning Character Behaviors Using Agent Modeling in Games , 2009, AIIDE.

[10]  Brett Browning,et al.  Plays as Effective Multiagent Plans Enabling Opponent-Adaptive Play Selection , 2004, ICAPS.

[11]  Milind Tambe,et al.  Towards Flexible Teamwork , 1997, J. Artif. Intell. Res..

[12]  Paulo Urbano,et al.  Dynamic scripting applied to a First-Person Shooter , 2010, 5th Iberian Conference on Information Systems and Technologies.

[13]  John Atkinson,et al.  On-the-fly generation of multi-robot team formation strategies based on game conditions , 2009, Expert Syst. Appl..

[14]  Manuela M. Veloso,et al.  A Formalization of Equilibria for Multiagent Planning , 2003, IJCAI.

[15]  H. Jaap van den Herik,et al.  Automatic Rule Ordering for Dynamic Scripting , 2007, AIIDE.

[16]  Arthur M. Farley,et al.  Extending dynamic scripting , 2008 .

[17]  Milind Tambe,et al.  The Communicative Multiagent Team Decision Problem: Analyzing Teamwork Theories and Models , 2011, J. Artif. Intell. Res..

[18]  Eric O. Postma,et al.  Adaptive game AI with dynamic scripting , 2006, Machine Learning.

[19]  Ernest Adams,et al.  Fundamentals of Game Design , 2006 .

[20]  Pieter Spronck,et al.  Effective and Diverse Adaptive Game AI , 2009, IEEE Transactions on Computational Intelligence and AI in Games.

[21]  Craig Boutilier,et al.  Planning, Learning and Coordination in Multiagent Decision Processes , 1996, TARK.

[22]  Edmund M. Clarke,et al.  Model checking and abstraction , 1994, TOPL.

[23]  Nicholas R. Jennings,et al.  Controlling Cooperative Problem Solving in Industrial Multi-Agent Systems Using Joint Intentions , 1995, Artif. Intell..

[24]  Candace L. Sidner,et al.  Robots and Avatars as Hosts, Advisors, Companions, and Jesters , 2009, AI Mag..

[25]  Duane Szafron,et al.  Learning Companion Behaviors Using Reinforcement Learning in Games , 2010, AIIDE.

[26]  Alan K. Mackworth Agents, Bodies, Constraints, Dynamics, and Evolution , 2009, AI Mag..

[27]  Manuel Ladebeck Applying Dynamic Scripting to "Jagged Alliance 2" , 2008 .

[28]  Milind Tambe,et al.  On Communication in Solving Distributed Constraint Satisfaction Problems , 2005, CEEMAS.

[29]  Milind Tambe,et al.  An Automated Teamwork Infrastructure for Heterogeneous Software Agents and Humans , 2003, Autonomous Agents and Multi-Agent Systems.

[30]  Milind Tambe,et al.  Solution sets for DCOPs and graphical games , 2006, AAMAS '06.

[31]  Subbarao Kambhampati,et al.  Anytime heuristic search for partial satisfaction planning , 2009, Artif. Intell..

[32]  Bikramjit Banerjee,et al.  Selecting partners , 2000, AGENTS '00.

[33]  Shaul Markovitch,et al.  LEARNING OF RESOURCE ALLOCATION STRATEGIES FOR GAME PLAYING , 1993, IJCAI.

[34]  Ronen I. Brafman,et al.  Preference Handling - An Introductory Tutorial , 2009, AI Mag..

[35]  Abhimanyu Das,et al.  Adaptive agent integration architectures for heterogeneous team members , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[36]  Risto Miikkulainen,et al.  Evolving visibly intelligent behavior for embedded game agents , 2006 .

[37]  Ruck Thawonmas,et al.  A method for online adaptation of computer-game AI rulebase , 2006, ACE '06.

[38]  Makoto Yokoo,et al.  Multiply-constrained distributed constraint optimization , 2006, AAMAS '06.

[39]  Hongen Lu Team formation in agent-based computer games , 2005 .

[40]  Makoto Yokoo,et al.  Not all agents are equal: scaling up distributed POMDPs for agent networks , 2008, AAMAS.

[41]  Nathan R. Sturtevant,et al.  Robust game play against unknown opponents , 2006, AAMAS '06.

[42]  Sarit Kraus,et al.  Coalition formation with uncertain heterogeneous information , 2003, AAMAS '03.

[43]  Darryl Charles,et al.  Dynamic Player Modelling: A Framework for Player-Centered Digital Games , 2004 .

[44]  Johannes Fürnkranz,et al.  Machine learning in games: a survey , 2001 .

[45]  Xin Sui,et al.  Agent trust evaluation and team formation in heterogeneous organizations , 2007, AAMAS '07.

[46]  Marie desJardins,et al.  Learning to trust in the competence and commitment of agents , 2009, Autonomous Agents and Multi-Agent Systems.

[47]  Scott D. Goodwin,et al.  Team Formation with Heterogeneous Agents in Computer Games , 2010, AAAI.

[48]  Peter Ross,et al.  Dynamic Strategies in a Real-Time Strategy Game , 2003, GECCO.

[49]  Yoav Shoham,et al.  A Game-Theoretic Analysis of Strictly Competitive Multiagent Scenarios , 2007, IJCAI.

[50]  John E. Laird,et al.  Human-Level AI's Killer Application: Interactive Computer Games , 2000, AI Mag..

[51]  Brett Browning,et al.  Dynamically formed heterogeneous robot teams performing tightly-coordinated tasks , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[52]  Lakhmi C. Jain,et al.  Computational Intelligence in Games , 2005, IEEE Transactions on Neural Networks.

[53]  Sven Koenig,et al.  A comparison of fast search methods for real-time situated agents , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[54]  Pieter Spronck,et al.  Dynamic formations in real-time strategy games , 2008, 2008 IEEE Symposium On Computational Intelligence and Games.

[55]  Milind Tambe,et al.  Allocating tasks in extreme teams , 2005, AAMAS '05.

[56]  Pieter Spronck,et al.  Adaptive game AI , 2005 .

[57]  Kenneth O. Stanley and Bobby D. Bryant and Risto Miikkulainen,et al.  Real-Time Evolution in the NERO Video Game (Winner of CIG 2005 Best Paper Award) , 2005, CIG.

[58]  Svetha Venkatesh,et al.  A Framework for Coordination and Learning among Teams of Agents , 1997, Agents and Multi-Agent Systems Formalisms, Methodologies, and Applications.

[59]  Michael H. Bowling,et al.  Optimal Unbiased Estimators for Evaluating Agent Performance , 2006, AAAI.

[60]  Liz Boyle,et al.  The Implementation of Team Based Assessment In Serious Games , 2009, 2009 Conference in Games and Virtual Worlds for Serious Applications.

[61]  Matthias Rauterberg,et al.  Incongruity-Based Adaptive Game Balancing , 2009, ACG.

[62]  Risto Miikkulainen,et al.  Coevolution of Role-Based Cooperation in Multiagent Systems , 2009, IEEE Transactions on Autonomous Mental Development.

[63]  Michael Katchabaw,et al.  A Realistic Reaction System for Modern Video Games , 2005, DiGRA Conference.

[64]  David W. Aha,et al.  Knowledge acquisition for adaptive game AI , 2007, Sci. Comput. Program..

[65]  Anthony Stentz,et al.  Traderbots: a new paradigm for robust and efficient multirobot coordination in dynamic environments , 2004 .

[66]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[67]  Tuomas Sandholm,et al.  Lossless abstraction of imperfect information games , 2007, JACM.

[68]  Eric O. Postma,et al.  Enhancing the Performance of Dynamic Scripting in Computer Games , 2004, ICEC.

[69]  Richard K. Belew,et al.  Coevolutionary search among adversaries , 1997 .

[70]  Aliza Gold Academic AI and Videogames: A Case Study of Incorporating Innovative Academic Research Into a Videogame Prototype , 2005, CIG.

[71]  Risto Miikkulainen,et al.  Real-Time Evolution of Neural Networks in the NERO Video Game , 2006, AAAI.

[72]  Christopher D. White,et al.  The Self Organization of Context for Learning in MultiAgent Games , 2006, AIIDE.

[73]  H. J. van den Herik,et al.  Opponent Modelling and Commercial Games , 2005 .

[74]  Yann Chevaleyre,et al.  Preference Handling in Combinatorial Domains: From AI to Social Choice , 2008, AI Mag..

[75]  Milind Tambe,et al.  Distributed Algorithms for DCOP: A Graphical-Game-Based Approach , 2004, PDCS.

[76]  Henry A. Kautz,et al.  Constraints and AI planning , 2005, IEEE Intelligent Systems.

[77]  Jeremy Ludwig,et al.  Examining Extended Dynamic Scripting in a Tactical Game Framework , 2009, AIIDE.