Modeling Kicks from the Merger of Nonprecessing Black Hole Binaries

Several groups have recently computed the gravitational radiation recoil produced by the merger of two spinning black holes. The results suggest that spin can be the dominant contributor to the kick, with reported recoil speeds of hundreds to even thousands of kilometers per second. The parameter space of spin kicks is large, however, and it is ultimately desirable to have a simple formula that gives the approximate magnitude of the kick given a mass ratio, spin magnitudes, and spin orientations. As a step toward this goal, we perform a systematic study of the recoil speeds from mergers of black holes with mass ratio q ≡ m1/m2 = 2/3 and dimensionless spin parameters of a1/m1 and a2/m2 equal to 0 or 0.2, with directions aligned or antialigned with the orbital angular momentum. We also run an equal-mass a1/m1 = -a2/m2 = 0.2 case, and find good agreement with previous results. We find that, for currently reported kicks from aligned or antialigned spins, a simple kick formula inspired by post-Newtonian analyses can reproduce the numerical results to better than ~10%.

[1]  Richard A. Matzner,et al.  Binary black holes: Spin dynamics and gravitational recoil , 2007, 0706.2541.

[2]  P. Marronetti,et al.  Binary black hole mergers: Large kicks for generic spin orientations , 2007, gr-qc/0703075.

[3]  Y. Zlochower,et al.  Maximum gravitational recoil. , 2007, Physical review letters.

[4]  José A. González,et al.  Supermassive recoil velocities for binary black-hole mergers with antialigned spins. , 2007, Physical review letters.

[5]  J. Centrella,et al.  Recoiling from a kick in the head-on collision of spinning black holes , 2007, gr-qc/0702016.

[6]  R. O’Shaughnessy,et al.  Dynamical interactions and the black-hole merger rate of the Universe , 2007, astro-ph/0701887.

[7]  Y. Zlochower,et al.  Large Merger Recoils and Spin Flips from Generic Black Hole Binaries , 2007, gr-qc/0701164.

[8]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[9]  Richard A. Matzner,et al.  Gravitational Recoil from Spinning Binary Black Hole Mergers , 2007, gr-qc/0701143.

[10]  José A. González,et al.  Maximum kick from nonspinning black-hole binary inspiral. , 2006, Physical review letters.

[11]  L. Brenneman,et al.  Constraining Black Hole Spin via X-Ray Spectroscopy , 2006, astro-ph/0608502.

[12]  M. Koppitz,et al.  How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture , 2006, gr-qc/0605030.

[13]  Y. Zlochower,et al.  Spinning-black-hole binaries: The orbital hang-up , 2006, gr-qc/0604012.

[14]  Dae-Il Choi,et al.  Getting a Kick Out of Numerical Relativity , 2006, astro-ph/0603204.

[15]  T. Damour,et al.  Gravitational recoil during binary black hole coalescence using the effective one body approach , 2006, gr-qc/0602117.

[16]  Dae-Il Choi,et al.  Binary black hole merger dynamics and waveforms , 2006, gr-qc/0602026.

[17]  Y. Zlochower,et al.  Last orbit of binary black holes , 2006, gr-qc/0601091.

[18]  D. Shoemaker,et al.  Unequal mass binary black hole plunges and gravitational recoil , 2006, gr-qc/0601026.

[19]  S. Cole,et al.  The effect of gravitational recoil on black holes forming in a hierarchical universe , 2005, astro-ph/0512073.

[20]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[21]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[22]  M. Miller,et al.  Three-Body Dynamics with Gravitational Wave Emission , 2005, astro-ph/0509885.

[23]  R. O’Shaughnessy,et al.  Binary Mergers and Growth of Black Holes in Dense Star Clusters , 2005, astro-ph/0508224.

[24]  T. Abel,et al.  The role of primordial kicks on black hole merger rates , 2005, astro-ph/0609443.

[25]  C. Will,et al.  Gravitational Recoil of Inspiraling Black Hole Binaries to Second Post-Newtonian Order , 2005, astro-ph/0507692.

[26]  F. Pretorius Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[27]  J. Baker,et al.  Reducing reflections from mesh refinement interfaces in numerical relativity , 2005, gr-qc/0505100.

[28]  J. Centrella,et al.  Wave zone extraction of gravitational radiation in three-dimensional numerical relativity , 2005, gr-qc/0503100.

[29]  M. Perna Dynamical evolution of intermediate mass black holes and their observable signatures in the nearby Universe , 2005, astro-ph/0501345.

[30]  J. D. Brown,et al.  Multigrid elliptic equation solver with adaptive mesh refinement , 2004, gr-qc/0411112.

[31]  E. Quataert,et al.  Core Formation in Galactic Nuclei due to Recoiling Black Holes , 2004, astro-ph/0407488.

[32]  Jaiyul Yoo,et al.  Formation of the Black Holes in the Highest Redshift Quasars , 2004, astro-ph/0406217.

[33]  Z. Haiman Constraints from Gravitational Recoil on the Growth of Supermassive Black Holes at High Redshift , 2004, astro-ph/0404196.

[34]  J. D. Brown,et al.  Evolving a Puncture Black Hole with Fixed Mesh Refinement , 2004, gr-qc/0403048.

[35]  P. Madau,et al.  The Effect of Gravitational-Wave Recoil on the Demography of Massive Black Holes , 2004, astro-ph/0403295.

[36]  M. Miller,et al.  Growth of Intermediate-Mass Black Holes in Globular Clusters , 2004, astro-ph/0402532.

[37]  D. Holz,et al.  How Black Holes Get Their Kicks: Gravitational Radiation Recoil Revisited , 2004, astro-ph/0402056.

[38]  D. Holz,et al.  Consequences of Gravitational Radiation Recoil , 2004, astro-ph/0402057.

[39]  S. Shapiro,et al.  Relativistic hydrodynamic evolutions with black hole excision , 2004, gr-qc/0401076.

[40]  B. Brügmann,et al.  Numerical simulation of orbiting black holes. , 2003, Physical review letters.

[41]  C. Misner Spherical harmonic decomposition on a cubic grid , 1999, gr-qc/9910044.

[42]  E. Colbert,et al.  Intermediate - mass black holes , 2003, astro-ph/0308402.

[43]  C. Reynolds,et al.  Fluorescent iron lines as a probe of astrophysical black hole systems , 2003 .

[44]  Y. Taniguchi,et al.  Mass Segregation in Star Clusters: Analytic Estimation of the Timescale , 2002, astro-ph/0208053.

[45]  J. C. Lee,et al.  A long hard look at MCG–6-30-15 with XMM-Newton , 2002, astro-ph/0311473.

[46]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[47]  M. Miller,et al.  Four-Body Effects in Globular Cluster Black Hole Coalescence , 2002, astro-ph/0202298.

[48]  Y. Taniguchi,et al.  To appear in THE ASTROPHYSICAL JOURNAL LETTERS RUNAWAY MERGING OF BLACK HOLES: ANALYTICAL CONSTRAINT ON THE TIMESCALE , 2002 .

[49]  M. Miller,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[50]  Thibault Damour,et al.  Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[51]  Thibault Damour,et al.  Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation , 2000 .

[52]  T. Tsuru,et al.  Formation of Intermediate-Mass Black Holes in Circumnuclear Regions of Galaxies , 2000, astro-ph/0002389.

[53]  Mario Campanelli,et al.  Second order gauge invariant gravitational perturbations of a Kerr black hole , 1999 .

[54]  Peter Huebner A scheme to numerically evolve data for the conformal Einstein equation , 1999, gr-qc/9903088.

[55]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[56]  Bernd Bruegmann,et al.  A Simple Construction of Initial Data for Multiple Black Holes , 1997 .

[57]  K. Nandra,et al.  The variable iron K emission line in MCG-6-30-15 , 1996 .

[58]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[59]  Kidder,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[60]  Wiseman,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. II. Higher-order wave forms and radiation recoil. , 1992, Physical review. D, Particles and fields.

[61]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[62]  M. Fitchett,et al.  Linear momentum and gravitational waves: circular orbits around a Schwarzschild black hole , 1984 .

[63]  M. Fitchett The influence of gravitational wave momentum losses on the centre of mass motion of a Newtonian binary system , 1983 .

[64]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .

[65]  C. Kilmister GENERAL RELATIVITY AND GRAVITATION ONE HUNDRED YEARS AFTER THE BIRTH OF ALBERT EINSTEIN (2 Volumes) , 1981 .

[66]  R. Znajek,et al.  General relativity and gravitation : one hundred years after the birth of Albert Einstein , 1980 .

[67]  J. Bekenstein Gravitational-Radiation Recoil and Runaway Black Holes , 1973 .

[68]  D. Christodoulou Reversible and Irreversible Transformations in Black-Hole Physics , 1970 .

[69]  A. Peres Classical Radiation Recoil , 1962 .