Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner

[1]  Yali Yao,et al.  lncRNA Oip5‐as1 attenuates myocardial ischaemia/reperfusion injury by sponging miR‐29a to activate the SIRT1/AMPK/PGC1α pathway , 2020, Cell proliferation.

[2]  A. Calkin,et al.  The Antioxidant Moiety of MitoQ Imparts Minimal Metabolic Effects in Adipose Tissue of High Fat Fed Mice , 2019, Front. Physiol..

[3]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[4]  Baocai Wang,et al.  LncRNA OIP5-AS1 inhibits osteoblast differentiation of valve interstitial cells via miR-137/TWIST11 axis. , 2019, Biochemical and biophysical research communications.

[5]  Risk for myocardial infarction , 2019, Dental Abstracts.

[6]  A. Hevener,et al.  The E3 ligase MARCH5 is a PPARγ target gene that regulates mitochondria and metabolism in adipocytes. , 2019, American journal of physiology. Endocrinology and metabolism.

[7]  J. Starmer,et al.  Interactome determination of a Long Noncoding RNA implicated in Embryonic Stem Cell Self-Renewal , 2018, Scientific Reports.

[8]  Haley O. Tucker,et al.  Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart , 2018, Proceedings of the National Academy of Sciences.

[9]  T. Marwick,et al.  Improving the quality of preclinical research echocardiography: observations, training, and guidelines for measurement. , 2018, American journal of physiology. Heart and circulatory physiology.

[10]  T. Tuomainen,et al.  Heart specific PGC-1&agr; deletion identifies metabolome of cardiac restricted metabolic heart failure , 2018, Cardiovascular research.

[11]  David P. Bartel,et al.  A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain , 2018, Cell.

[12]  Howard Y. Chang,et al.  Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements , 2017, Nature Genetics.

[13]  M. Ramialison,et al.  Multicellular Transcriptional Analysis of Mammalian Heart Regeneration , 2017, Circulation.

[14]  P. Gregorevic,et al.  Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease , 2017, Proceedings of the National Academy of Sciences.

[15]  Praveen Sethupathy,et al.  Long Noncoding RNA Moderates MicroRNA Activity to Maintain Self-Renewal in Embryonic Stem Cells , 2017, Stem cell reports.

[16]  B. Drew,et al.  Long non-coding RNAs (lncRNAs) in skeletal and cardiac muscle: potential therapeutic and diagnostic targets? , 2016, Clinical science.

[17]  L. Delbridge,et al.  BGP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle. , 2016, The American journal of pathology.

[18]  P. Overbeek,et al.  Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. , 2016, The Journal of clinical investigation.

[19]  H. Blau,et al.  Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy , 2016, Proceedings of the National Academy of Sciences.

[20]  M. Schipma,et al.  Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal Dilated Cardiomyopathy in Mice , 2016, PloS one.

[21]  R. de Cabo,et al.  HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP , 2016, Genes & development.

[22]  A. Hevener,et al.  Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females , 2016, Science Translational Medicine.

[23]  Kotb Abdelmohsen,et al.  LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR , 2016, Nucleic acids research.

[24]  Karl R. Clauser,et al.  MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins , 2015, Nucleic Acids Res..

[25]  Alena Shkumatava,et al.  LncRNAs in vertebrates: advances and challenges. , 2015, Biochimie.

[26]  中山 幸輝 A long noncoding RNA protects the heart from pathological hypertrophy , 2015 .

[27]  P. Kapranov,et al.  The Landscape of long noncoding RNA classification. , 2015, Trends in genetics : TIG.

[28]  R. Evans,et al.  Estrogen-Related Receptor α (ERRα) and ERRγ Are Essential Coordinators of Cardiac Metabolism and Function , 2015, Molecular and Cellular Biology.

[29]  Xiao-Ming Gao,et al.  Therapeutic silencing of miR‐652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  E. Ashley,et al.  A long non-coding RNA protects the heart from pathological hypertrophy , 2014, Nature.

[31]  G. Lemesle,et al.  Circulating Long Noncoding RNA, LIPCAR, Predicts Survival in Patients With Heart Failure , 2014, Circulation research.

[32]  R. Guigó,et al.  Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs , 2014, European heart journal.

[33]  F. Liu,et al.  The Long Noncoding RNA CHRF Regulates Cardiac Hypertrophy by Targeting miR-489 , 2014, Circulation research.

[34]  Sven Diederichs,et al.  The four dimensions of noncoding RNA conservation. , 2014, Trends in genetics : TIG.

[35]  J. Steitz,et al.  The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones , 2014, Cell.

[36]  Anindya Dutta,et al.  The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration , 2014, Genes & development.

[37]  D. Bartel,et al.  lincRNAs: Genomics, Evolution, and Mechanisms , 2013, Cell.

[38]  D. Hittel,et al.  Myostatin-induced inhibition of the long noncoding RNA Malat1 is associated with decreased myogenesis. , 2013, American journal of physiology. Cell physiology.

[39]  Vincent L. Butty,et al.  Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment , 2013, Cell.

[40]  Manolis Kellis,et al.  The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. , 2013, Developmental cell.

[41]  S. Kauppinen,et al.  Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function , 2012, Proceedings of the National Academy of Sciences.

[42]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[43]  D. Bartel,et al.  Conserved Function of lincRNAs in Vertebrate Embryonic Development despite Rapid Sequence Evolution , 2011, Cell.

[44]  P. Leedman,et al.  Steroid Receptor RNA Activator - A nuclear receptor coregulator with multiple partners: Insights and challenges. , 2011, Biochimie.

[45]  I. van Mechelen,et al.  Using Ribosomal Protein Genes as Reference: A Tale of Caution , 2008, PloS one.

[46]  A. Dart,et al.  Knockout of β1‐ and β2‐adrenoceptors attenuates pressure overload‐induced cardiac hypertrophy and fibrosis , 2008, British journal of pharmacology.

[47]  R. Naviaux,et al.  ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. , 2007, Cell metabolism.

[48]  Hedi Peterson,et al.  g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments , 2007, Nucleic Acids Res..

[49]  Yunyu Zhang,et al.  Protective effects of exercise and phosphoinositide 3-kinase(p110α) signaling in dilated and hypertrophic cardiomyopathy , 2007, Proceedings of the National Academy of Sciences.

[50]  Yusuke Nakamura,et al.  Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction , 2006, Journal of Human Genetics.

[51]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. Dart,et al.  Regression of pressure overload-induced left ventricular hypertrophy in mice. , 2005, American journal of physiology. Heart and circulatory physiology.

[53]  S. Izumo,et al.  Inhibition of mTOR Signaling With Rapamycin Regresses Established Cardiac Hypertrophy Induced by Pressure Overload , 2004, Circulation.

[54]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[55]  A. Dart,et al.  beta(2)-adrenergic receptor overexpression exacerbates development of heart failure after aortic stenosis. , 2000, Circulation.

[56]  Nicolás,et al.  SAMMSON fosters cancer cell fitness by enhancing concertedly mitochondrial and cytosolic translation , 2018 .

[57]  Piero Carninci,et al.  Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. , 2016, Biochimica et biophysica acta.

[58]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.