Global boundedness to a chemotaxis system with singular sensitivity and logistic source

We consider the parabolic-parabolic Keller–Segel system with singular sensitivity and logistic source: $$ u_t=\Delta u-\chi \nabla \cdot (\frac{u}{v}\nabla v) +ru-\mu u^2$$ut=Δu-χ∇·(uv∇v)+ru-μu2, $$v_t=\Delta v-v+u$$vt=Δv-v+u under the homogeneous Neumann boundary conditions in a smooth bounded domain $$\Omega \subset \mathbb {R}^2$$Ω⊂R2, $$\chi ,\mu >0$$χ,μ>0 and $$r\in \mathbb {R}$$r∈R. It is proved that the system exists globally bounded classical solutions if $$r>\frac{\chi ^2}{4}$$r>χ24 for $$0<\chi \le 2$$0\chi -1$$r>χ-1 for $$\chi >2$$χ>2.

[1]  Tohru Tsujikawa,et al.  Exponential attractor for a chemotaxis-growth system of equations , 2002 .

[2]  Xinru Cao,et al.  Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source , 2014 .

[3]  Sining Zheng,et al.  Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source , 2014 .

[4]  Michael Winkler,et al.  Boundedness of solutions to parabolic–elliptic Keller–Segel systems with signal‐dependent sensitivity , 2015 .

[5]  L. Segel,et al.  Traveling bands of chemotactic bacteria: a theoretical analysis. , 1971, Journal of theoretical biology.

[6]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[7]  Sining Zheng,et al.  Global boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with logistic source , 2016, Appl. Math. Lett..

[8]  Nicola Bellomo,et al.  Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues , 2015 .

[9]  Michael Winkler,et al.  Global solutions in a fully parabolic chemotaxis system with singular sensitivity , 2011 .

[10]  Michael Winkler,et al.  A Chemotaxis System with Logistic Source , 2007 .

[11]  Toshitaka Nagai,et al.  Behavior of radially symmetric solutions of a system related to chemotaxis , 1997 .

[12]  Michael Winkler,et al.  Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics , 2016 .

[13]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[14]  M. Mimura,et al.  Chemotaxis and growth system with singular sensitivity function , 2005 .

[15]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[16]  Michael Winkler,et al.  Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source , 2010 .

[17]  Kentarou Fujie,et al.  Boundedness in a fully parabolic chemotaxis system with singular sensitivity , 2015 .

[18]  J. Lankeit A new approach toward boundedness in a two‐dimensional parabolic chemotaxis system with singular sensitivity , 2015, 1501.05175.

[19]  Kentarou Fujie,et al.  Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity , 2015 .

[20]  Michael Winkler,et al.  Blow-up prevention by logistic sources in a parabolic–elliptic Keller–Segel system with singular sensitivity , 2014 .