Banning carbon nanotubes would be scientifically unjustified and damaging to innovation

[1]  Steffen Foss Hansen,et al.  Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern , 2020, Nature Nanotechnology.

[2]  I. Albert,et al.  A rapid and label-free platform for virus capture and identification from clinical samples , 2019, Proceedings of the National Academy of Sciences.

[3]  Matteo Pasquali,et al.  In Vivo Restoration of Myocardial Conduction With Carbon Nanotube Fibers. , 2019, Circulation. Arrhythmia and electrophysiology.

[4]  L. Wilbrecht,et al.  Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor , 2019, Science Advances.

[5]  R. Malekzadeh,et al.  Advisory Group recommendations on priorities for the IARC Monographs. , 2019, The Lancet. Oncology.

[6]  Neelkanth M. Bardhan,et al.  Real-Time Single-Walled Carbon Nanotube-Based Fluorescence Imaging Improves Survival after Debulking Surgery in an Ovarian Cancer Model. , 2019, ACS nano.

[7]  Nicholas T. Dee,et al.  Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. , 2018, ACS nano.

[8]  Ming Zheng,et al.  An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo , 2018, Science Translational Medicine.

[9]  Edmund J. Crampin,et al.  Minimum information reporting in bio–nano experimental literature , 2018, Nature Nanotechnology.

[10]  Roger L. Chang,et al.  High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants , 2017, bioRxiv.

[11]  Dali Cai,et al.  Carbon nanotube bundles with tensile strength over 80 GPa , 2018, Nature Nanotechnology.

[12]  Bradley J Beattie,et al.  Carbon nanotubes exhibit fibrillar pharmacology in primates , 2017, PloS one.

[13]  S. Rotkin,et al.  Micro-Raman spectroscopy as an enabling tool for long-term intracellular studies of nanomaterials at nanomolar concentration levels. , 2017, Journal of materials chemistry. B.

[14]  K. Dawson,et al.  Towards a classification strategy for complex nanostructures. , 2017, Nanoscale horizons.

[15]  Abigail S. Haka,et al.  A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux , 2017, bioRxiv.

[16]  Volodymyr B. Koman,et al.  Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. , 2017, Nature materials.

[17]  D. Scheinberg,et al.  Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury , 2016, Science Translational Medicine.

[18]  M. Ema,et al.  A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. , 2016, Regulatory toxicology and pharmacology : RTP.

[19]  Laurent Cognet,et al.  Toward the suppression of cellular toxicity from single-walled carbon nanotubes. , 2016, Biomaterials science.

[20]  Kenichiro Itami,et al.  Structurally uniform and atomically precise carbon nanostructures , 2016 .

[21]  Lang Tran,et al.  A Multilaboratory Toxicological Assessment of a Panel of 10 Engineered Nanomaterials to Human Health—ENPRA Project—The Highlights, Limitations, and Current and Future Challenges , 2016, Journal of toxicology and environmental health. Part B, Critical reviews.

[22]  Kannan M. Krishnan,et al.  In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. , 2015, Chemical Society reviews.

[23]  H. Dai,et al.  Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. , 2015, Chemical reviews.

[24]  C. Kemere,et al.  Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. , 2015, ACS nano.

[25]  Kurt Straif,et al.  Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. , 2014, The Lancet. Oncology.

[26]  Harald F Krug,et al.  Nanosafety research--are we on the right track? , 2014, Angewandte Chemie.

[27]  Mithat Gönen,et al.  Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe , 2014, Science Translational Medicine.

[28]  Lucia Gemma Delogu,et al.  Functionalized carbon nanotubes as immunomodulator systems. , 2013, Biomaterials.

[29]  Maurizio Prato,et al.  Asbestos-like pathogenicity of long carbon nanotubes alleviated by chemical functionalization. , 2013, Angewandte Chemie.

[30]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[31]  Anna Trakoli IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 99: Some Aromatic Amines, Organic Dyes, and Related Exposures. International Agency for Research on Cancer , 2012 .

[32]  Adriele Prina-Mello,et al.  Screening the cytotoxicity of single-walled carbon nanotubes using novel 3D tissue-mimetic models. , 2011, ACS nano.

[33]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[34]  Kostas Kostarelos,et al.  The long and short of carbon nanotube toxicity , 2008, Nature Biotechnology.

[35]  Craig A. Poland,et al.  Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. , 2008, Nature nanotechnology.

[36]  Vicki Stone,et al.  Toxicology of nanoparticles: A historical perspective , 2007 .

[37]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[38]  J. James,et al.  Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. , 2003, Toxicological sciences : an official journal of the Society of Toxicology.

[39]  Jeremy Fairbank,et al.  Historical Perspective , 1987, Do We Really Understand Quantum Mechanics?.

[40]  H. Bartsch,et al.  International Agency for Research on Cancer. , 1969, WHO chronicle.