Variable selection for joint mean and dispersion models of the inverse Gaussian distribution

The choice of distribution is often made on the basis of how well the data appear to be fitted by the distribution. The inverse Gaussian distribution is one of the basic models for describing positively skewed data which arise in a variety of applications. In this paper, the problem of interest is simultaneously parameter estimation and variable selection for joint mean and dispersion models of the inverse Gaussian distribution. We propose a unified procedure which can simultaneously select significant variables in mean and dispersion model. With appropriate selection of the tuning parameters, we establish the consistency of this procedure and the oracle property of the regularized estimators. Simulation studies and a real example are used to illustrate the proposed methodologies.

[1]  John A. Nelder,et al.  Generalized linear models for the analysis of quality‐improvement experiments , 1998 .

[2]  S. Gupta,et al.  Statistical decision theory and related topics IV , 1988 .

[3]  John A. Nelder,et al.  Generalized linear models for the analysis of Taguchi-type experiments , 1991 .

[4]  R. Park Estimation with Heteroscedastic Error Terms , 1966 .

[5]  J. Leroy Folks,et al.  The Inverse Gaussian Distribution , 1989 .

[6]  S. Weisberg,et al.  Diagnostics for heteroscedasticity in regression , 1983 .

[7]  Z. Zhang,et al.  Variable Selection in Joint Generalized Linear Models , 2009 .

[8]  A. Verbyla,et al.  Modelling Variance Heterogeneity: Residual Maximum Likelihood and Diagnostics , 1993 .

[9]  A. Harvey Estimating Regression Models with Multiplicative Heteroscedasticity , 1976 .

[10]  H. N. Nagaraja,et al.  The Inverse Gaussian Distribution: A Case Study in Exponential Families (V. Seshadri) , 1996, SIAM Rev..

[11]  Gordon K. Smyth,et al.  Adjusted likelihood methods for modelling dispersion in generalized linear models , 1999 .

[12]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[13]  A. Basu,et al.  The Inverse Gaussian Distribution , 1993 .

[14]  Gordon K. Smyth,et al.  Generalized linear models with varying dispersion , 1989 .

[15]  A. Verbyla,et al.  Joint modelling of location and scale parameters of the t distribution , 2004 .

[16]  Runze Li,et al.  Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.

[17]  A. Antoniadis Wavelets in statistics: A review , 1997 .

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  B. Wei,et al.  Varying Dispersion Diagnostics for Inverse Gaussian Regression Models , 2004 .

[20]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[21]  Jianqing Fan,et al.  A Selective Overview of Variable Selection in High Dimensional Feature Space. , 2009, Statistica Sinica.

[22]  C. Chatfield Continuous Univariate Distributions, Vol. 1 , 1995 .

[23]  M. Aitkin Modelling variance heterogeneity in normal regression using GLIM , 1987 .

[24]  Liugen Xue,et al.  Variable selection for semiparametric varying coefficient partially linear errors-in-variables models , 2010, J. Multivar. Anal..

[25]  Runze Li,et al.  Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.