Contemporary Computing Technologies for Processing Big Spatiotemporal Data

Geographic phenomena evolve in a four-dimensional spatiotemporal world. To capture the geographical phenomena at different scales, large amount of data (big data) are produced with specific spatiotemporal patterns. Phenomena evolution and the principles driving the evolution provide pathways for developing methodological solutions to process the big spatiotemporal data. Based on experiences gained from several projects, such as climate studies and cloud computing, we introduce in this chapter modern computing technologies required for processing big data, including (1) sensor web, Earth observations, and model simulations for collecting and generating big data, (2) flexible and standard-based systems for managing big data for easy discovery and access, (3) multidimensional visual analytics for exploring and analyzing big spatiotemporal data, and (4) grid, cloud, and GPU computing for addressing the computing intensive challenges. We discuss through exemplar projects how these cutting-edge computing technologies are utilized to handle big spatiotemporal data. We expect this chapter to set a computing research context for future big data handling at different spatiotemporal granules.

[1]  Michael F. Goodchild,et al.  Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? , 2011, Int. J. Digit. Earth.

[2]  Alexandros Labrinidis,et al.  Challenges and Opportunities with Big Data , 2012, Proc. VLDB Endow..

[3]  Qunying Huang,et al.  Cloud computing for geosciences: deployment of GEOSS clearinghouse on Amazon's EC2 , 2010, HPDGIS '10.

[4]  Edward R. Tufte Visual explanations: images and quantities, evidence and narrative , 1997 .

[5]  E. Rodríguez,et al.  A Global Assessment of the SRTM Performance , 2006 .

[6]  Stephen Michael Kosslyn,et al.  Graph Design for the Eye and Mind , 2006 .

[7]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[8]  Eliot Christian,et al.  Planning for the Global Earth Observation System of Systems (GEOSS) , 2005 .

[9]  Bin Zhou,et al.  Distributed geospatial information processing: sharing distributed geospatial resources to support Digital Earth , 2008, Int. J. Digit. Earth.

[10]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[11]  Andrew T. Wilson,et al.  Visualization of uncertainty and ensemble data: Exploration of climate modeling and weather forecast data with integrated ViSUS-CDAT systems , 2009 .

[12]  Jing Li,et al.  A performance, semantic and service quality-enhanced distributed search engine for improving geospatial resource discovery , 2013, Int. J. Geogr. Inf. Sci..

[13]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[14]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[15]  A. Robock Volcanic eruptions and climate , 2000 .

[16]  Qunying Huang,et al.  Using adaptively coupled models and high-performance computing for enabling the computability of dust storm forecasting , 2013, Int. J. Geogr. Inf. Sci..

[17]  Robert J. Charlson,et al.  Earth system science : from biogeochemical cycles to global change , 2000 .

[18]  W. M. Gray,et al.  The Recent Increase in Atlantic Hurricane Activity: Causes and Implications , 2001, Science.

[19]  A. Stohl,et al.  A 15‐year climatology of stratosphere–troposphere exchange with a Lagrangian particle dispersion model 2. Mean climate and seasonal variability , 2003 .

[20]  Fiona Fui-Hoon Nah,et al.  A study on tolerable waiting time: how long are Web users willing to wait? , 2004, AMCIS.

[21]  Keith C. Clarke,et al.  Parallel algorithms for geographic processing , 2008 .

[22]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[23]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[24]  T. Kusuda,et al.  EARTH TEMPERATURE AND THERMAL DIFFUSIVITY AT SELECTED STATIONS IN THE UNITED STATES , 1965 .

[25]  David R. Maidment,et al.  Using SOA and RIAs for water data discovery and retrieval , 2011, Environ. Model. Softw..

[26]  Qunying Huang,et al.  A Web-Based Geovisual Analytical System for Climate Studies , 2012, Future Internet.

[27]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[28]  Charles R. Dyer,et al.  Interactive visualization of Earth and space science computations , 1994, Computer.

[29]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[30]  Zhenlong Li,et al.  An optimized framework for seamlessly integrating OGC Web Services to support geospatial sciences , 2011, Int. J. Geogr. Inf. Sci..

[31]  Timos K. Sellis,et al.  Spatio-temporal indexing for large multimedia applications , 1996, Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems.

[32]  Qunying Huang,et al.  Optimizing grid computing configuration and scheduling for geospatial analysis: An example with interpolating DEM , 2011, Comput. Geosci..

[33]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[34]  Qunying Huang,et al.  Using spatial principles to optimize distributed computing for enabling the physical science discoveries , 2011, Proceedings of the National Academy of Sciences.

[35]  Robert Muir,et al.  Apache Lucene 4 , 2012, OSIR@SIGIR.

[36]  Chaowei Phil Yang,et al.  Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes , 2011, Comput. Geosci..

[37]  Kirk Martinez,et al.  Environmental Sensor Networks: A revolution in the earth system science? , 2006 .