Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces

This article discusses modern techniques for nonuniform sampling and reconstruction of functions in shift-invariant spaces. It is a survey as well as a research paper and provides a unified framework for uniform and nonuniform sampling and reconstruction in shift-invariant subspaces by bringing together wavelet theory, frame theory, reproducing kernel Hilbert spaces, approximation theory, amalgam spaces, and sampling. Inspired by applications taken from communication, astronomy, and medicine, the following aspects will be emphasized: (a) The sampling problem is well defined within the setting of shift-invariant spaces. (b) The general theory works in arbitrary dimension and for a broad class of generators. (c) The reconstruction of a function from any sufficiently dense nonuniform sampling set is obtained by efficient iterative algorithms. These algorithms converge geometrically and are robust in the presence of noise. (d) To model the natural decay conditions of real signals and images, the sampling theory is developed in weighted L p-spaces.

[1]  Kristian Seip,et al.  On the Connection between Exponential Bases and Certain Related Sequences in L2(− π,π) , 1995 .

[2]  A. Papoulis,et al.  Generalized sampling expansion , 1977 .

[3]  D. Walnut,et al.  Gabor systems and the Balian-Low Theorem , 1998 .

[4]  Michael Unser,et al.  Polynomial spline signal approximations: Filter design and asymptotic equivalence with Shannon's sampling theorem , 1992, IEEE Trans. Inf. Theory.

[5]  Wenchang Sun,et al.  On the stability of multivariate trigonometric systems , 1999 .

[6]  J. M. Whittaker Interpolatory function theory , 1935 .

[7]  D. Weinberger,et al.  Analysis of interpolation effects in the reslicing of functional MR images. , 1997, Journal of computer assisted tomography.

[8]  J. Benedetto,et al.  The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .

[9]  P. P. Vaidyanathan,et al.  Generalized sampling theorems in multiresolution subspaces , 1997, IEEE Trans. Signal Process..

[10]  G. Walter,et al.  Irregular Sampling in Wavelet Subspaces , 1995 .

[11]  H. Landau Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .

[12]  Erwin B. Bellers,et al.  New algorithm for motion estimation on interlaced video , 1998, Electronic Imaging.

[13]  A. Aldroubi Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces , 2002 .

[14]  D. Walnut Nonperiodic Sampling of Bandlimited Functions on Unions of Rectangular Lattices , 1995 .

[15]  H. Feichtinger,et al.  Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The $L^p$-theory , 1998 .

[16]  C. A. Berenstein,et al.  Exact deconvolution for multiple convolution operators-an overview, plus performance characterizations for imaging sensors , 1990, Proc. IEEE.

[17]  Thomas Strohmer,et al.  Numerical analysis of the non-uniform sampling problem , 2000 .

[18]  J. R. Higgins,et al.  Five short stories about the cardinal series , 1985 .

[19]  Karlheinz Gröchenig,et al.  On Landau's Necessary Density Conditions for Sampling and Interpolation of Band-Limited Functions , 1996 .

[20]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[21]  Ivan W. Selesnick,et al.  Interpolating multiwavelet bases and the sampling theorem , 1999, IEEE Trans. Signal Process..

[22]  Ronald A. DeVore,et al.  Image compression through wavelet transform coding , 1992, IEEE Trans. Inf. Theory.

[23]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[24]  Paul Malliavin,et al.  On the closure of characters and the zeros of entire functions , 1967 .

[25]  Xiang-Gen Xia,et al.  On sampling theorem, wavelets, and wavelet transforms , 1993, IEEE Trans. Signal Process..

[26]  Xiang-Gen Xia,et al.  Estimation of aliasing error in sampling theorem for signals not necessarily in wavelet subspaces , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  Ronald A. DeVore,et al.  Partitions of Unity and Approximation , 1985 .

[28]  Hsieh Hou,et al.  Cubic splines for image interpolation and digital filtering , 1978 .

[29]  H. J. Landau,et al.  A sparse regular sequence of exponentials closed on large sets , 1964 .

[30]  A. Aldroubi,et al.  p-Frames and Shift Invariant Subspaces of Lp , 2001 .

[31]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[32]  Youming Liu Irregular Sampling for Spline Wavelet Subspaces , 1996, IEEE Trans. Inf. Theory.

[33]  A. Aldroubi Portraits of frames , 1995 .

[34]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[35]  Kung Yao,et al.  Applications of Reproducing Kernel Hilbert Spaces-Bandlimited Signal Models , 1967, Inf. Control..

[36]  Kurt Jetter,et al.  Topics in Scattered Data Interpolation and Non-Uniform Sampling , 1997 .

[37]  Y. Domar Harmonic analysis based on certain commutative Banach algebras , 1956 .

[38]  Thomas Strohmer,et al.  Smooth approximation of potential fields from noisy scattered data , 1998 .

[39]  George C. Donovan,et al.  Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .

[40]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Peter G. Casazza,et al.  FRAMES FOR BANACH SPACES , 1977 .

[42]  Tim N. T. Goodman,et al.  Wavelet bases for a set of commuting unitary operators , 1993, Adv. Comput. Math..

[43]  John J. Benedetto,et al.  Nonuniform sampling and spiral MRI reconstruction , 2000, SPIE Optics + Photonics.

[44]  Shuichi Itoh,et al.  Irregular Sampling Theorems for Wavelet Subspaces , 1998, IEEE Trans. Inf. Theory.

[45]  R. Jia Shift-invariant spaces and linear operator equations , 1998 .

[46]  Hans G. Feichtinger,et al.  Theory and practice of irregular sampling , 2021, Wavelets.

[47]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[48]  M. Zuhair Nashed,et al.  General sampling theorems for functions in reproducing kernel Hilbert spaces , 1991, Math. Control. Signals Syst..

[49]  Augustus J. E. M. Janssen,et al.  The Zak transform and sampling theorems for wavelet subspaces , 1993, IEEE Trans. Signal Process..

[50]  Yurii Lyubarskii,et al.  Convergence and summability of Gabor expansions at the Nyquist density , 1999 .

[51]  A. Aldroubi,et al.  Families of multiresolution and wavelet spaces with optimal properties , 1993 .

[52]  K. Gröchenig,et al.  Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces , 2000 .

[53]  Michael Unser,et al.  Image interpolation and resampling , 2000 .

[54]  Peter G. Casazza,et al.  Frames containing a Riesz basis and preservation of this property under perturbations , 1995 .

[55]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[56]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[57]  H. Kramer,et al.  A Generalized Sampling Theorem , 1959 .

[58]  John P. Oakley,et al.  A Fourier-domain formula for the least-squares projection of a function onto a repetitive basis in N-dimensional space , 1990, IEEE Trans. Acoust. Speech Signal Process..

[59]  C. Chui Wavelets: A Tutorial in Theory and Applications , 1992 .

[60]  Gilbert Strang,et al.  THE FINITE ELEMENT METHOD AND APPROXIMATION THEORY , 1971 .

[61]  R. Balan Equivalence relations and distances between Hilbert frames , 1999 .

[62]  Xiang-Gen Xia,et al.  Design of prefilters for discrete multiwavelet transforms , 1996, IEEE Trans. Signal Process..

[63]  H. Feichtinger,et al.  Iterative reconstruction of multivariate band-limited functions from irregular sampling values , 1992 .

[64]  Thomas Strohmer,et al.  On the Reconstruction of Irregularly Sampled Time Series , 2000 .

[65]  A. Aldroubi,et al.  Sampling procedures in function spaces and asymptotic equivalence with shannon's sampling theory , 1994 .

[66]  J. Benedetto Irregular sampling and frames , 1993 .

[67]  K. Gröchenig RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .

[68]  N. Wiener,et al.  Fourier Transforms in the Complex Domain , 1934 .

[69]  P. Jorgensen A geometric approach to the cascade approximation operator for wavelets , 1999, math/9912132.

[70]  R. Jia Stability of the Shifts of a Finite Number of Functions , 1998 .

[71]  T. Strohmer,et al.  Efficient numerical methods in non-uniform sampling theory , 1995 .

[72]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[73]  Michael Unser,et al.  Cardinal spline filters: Stability and convergence to the ideal sinc interpolator , 1992, Signal Process..

[74]  B. Torrésani,et al.  Wavelets: Mathematics and Applications , 1994 .

[75]  Gabriele Steidl,et al.  New Fourier reconstruction algorithms for computerized tomography , 2000, SPIE Optics + Photonics.

[76]  H. Reiter Classical Harmonic Analysis and Locally Compact Groups , 1968 .

[77]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[78]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[79]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[80]  K. Seip An irregular sampling theorem for functions bandlimited in a generalized sense , 1987 .

[81]  A. Aldroubi Oblique projections in atomic spaces , 1996 .

[82]  W. Madych,et al.  The Recovery of Irregularly Sampled Band Limited Functions via Tempered Splines , 1994 .

[83]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[84]  Graham Thomas A comparison of motion-compensated interlace-to-progressive conversion methods , 1998, Signal Process. Image Commun..

[85]  A. Aldroubi,et al.  Polynomial splines and wavelets: a signal processing perspective , 1993 .

[86]  Gilbert G. Walter,et al.  A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.

[87]  Karlheinz Gröchenig,et al.  Acceleration of the frame algorithm , 1993, IEEE Trans. Signal Process..

[88]  J. Zerubia,et al.  A Generalized Sampling Theory without bandlimiting constraints , 1998 .

[89]  A. J. Jerri Correction to "The Shannon sampling theorem—Its various extensions and applications: A tutorial review" , 1979 .

[90]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[91]  C. Micchelli,et al.  On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.

[92]  K. Gröchenig,et al.  Numerical and Theoretical Aspects of Nonuniform Sampling of Band-Limited Images , 2001 .

[93]  Thierry Blu,et al.  Quantitative Fourier analysis of approximation techniques. II. Wavelets , 1999, IEEE Trans. Signal Process..

[94]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[95]  H. Feichtinger Generalized Amalgams, With Applications to Fourier Transform , 1990, Canadian Journal of Mathematics.

[96]  A. Aldroubi,et al.  Families of wavelet transforms in connection with Shannon's sampling theory and the Gabor transform , 1993 .

[97]  L. Carleson,et al.  The Collected Works of Arne Beurling , 1989 .

[98]  Say Song Goha,et al.  Reconstruction of bandlimited signals from irregular samples , 1995, Signal Process..

[99]  S. L. Lee,et al.  Wavelets in wandering subspaces , 1993 .