Fusion rules for merging uncertain information

In previous papers, we have presented a logic-based framework based on fusion rules for merging structured news reports. Structured news reports are XML documents, where the textentries are restricted to individual words or simple phrases, such as names and domain-specific terminology, and numbers and units. We assume structured news reports do not require natural language processing. Fusion rules are a form of scripting language that define how structured news reports should be merged. The antecedent of a fusion rule is a call to investigate the information in the structured news reports and the background knowledge, and the consequent of a fusion rule is a formula specifying an action to be undertaken to form a merged report. It is expected that a set of fusion rules is defined for any given application. In this paper we extend the approach to handling probability values, degrees of beliefs, or necessity measures associated with textentries in the news reports. We present the formal definition for each of these types of uncertainty and explain how they can be handled using fusion rules. We also discuss the methods of detecting inconsistencies among sources.

[1]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[2]  Arnaud Sahuguet,et al.  Building Light-Weight Wrappers for Legacy Web Data-Sources Using W4F , 1999, VLDB.

[3]  Smets Ph.,et al.  Belief functions, Non-standard logics for automated reasoning , 1988 .

[4]  Didier Dubois,et al.  Possibility Theory: Qualitative and Quantitative Aspects , 1998 .

[5]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[6]  Hector Garcia-Molina,et al.  The Management of Probabilistic Data , 1992, IEEE Trans. Knowl. Data Eng..

[7]  Anthony Hunter,et al.  Measuring inconsistency in knowledge via quasi-classical models , 2002, AAAI/IAAI.

[8]  Hung T. Nguyen,et al.  Possibility Theory, Probability and Fuzzy Sets Misunderstandings, Bridges and Gaps , 2000 .

[9]  Serafín Moral,et al.  Merging databases: Problems and examples , 2001, Int. J. Intell. Syst..

[10]  Alexandra Poulovassilis,et al.  A General Formal Framework for Schema Transformation , 1998, Data Knowl. Eng..

[11]  Didier Dubois,et al.  The principle of minimum specificity as a basis for evidential reasoning , 1986, IPMU.

[12]  Leo Obrst,et al.  Unpacking the semantics of source and usage to perform semantic reconciliation in large-scale information systems , 1999, SGMD.

[13]  William W. Cohen A Web-based information system that reasons with structured collections of text , 1998, AGENTS '98.

[14]  Sarit Kraus,et al.  Combining Knowledge Bases Consisting of First Order Theories , 1991, ISMIS.

[15]  J. Kacprzyk,et al.  Aggregation and Fusion of Imperfect Information , 2001 .

[16]  Marco Schaerf,et al.  Arbitration (or How to Merge Knowledge Bases) , 1998, IEEE Trans. Knowl. Data Eng..

[17]  Trevor J. M. Bench-Capon,et al.  The KRAFT architecture for knowledge fusion and transformation , 2000, Knowl. Based Syst..

[18]  Anthony Hunter,et al.  Merging potentially inconsistent items of structured text , 2000, Data Knowl. Eng..

[19]  M. Gupta,et al.  FUZZY INFORMATION AND DECISION PROCESSES , 1981 .

[20]  Weiru Liu,et al.  Merging uncertain information with semantic heterogeneity in XML , 2006, Knowledge and Information Systems.

[21]  Anthony Hunter,et al.  Fusion rules for context-dependent aggregation of structured news reports , 2004, J. Appl. Non Class. Logics.

[22]  Hirofumi Katsuno,et al.  On the Difference between Updating a Knowledge Base and Revising It , 1991, KR.

[23]  Ronald R. Yager,et al.  Uncertainty in Knowledge-Based Systems , 1987, Lecture Notes in Computer Science.

[24]  Carole A. Goble,et al.  Query processing in the TAMBIS bioinformatics source integration system , 1999, Proceedings. Eleventh International Conference on Scientific and Statistical Database Management.

[25]  Philippe Smets,et al.  Data association in multi‐target detection using the transferable belief model , 2001, Int. J. Intell. Syst..

[26]  Petr Hájek,et al.  On Belief Functions , 1992, Advanced Topics in Artificial Intelligence.

[27]  Sébastien Konieczny,et al.  On the Logic of Merging , 1998, KR.

[28]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[29]  Henri Prade,et al.  Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..

[30]  P ShethAmit,et al.  Federated database systems for managing distributed, heterogeneous, and autonomous databases , 1990 .

[31]  Philippe Smets Non-standard logics for automated reasoning , 1988 .

[32]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[33]  Ulrike Sattler,et al.  A Data Warehouse Conceptual Data Model for Multidimensional Aggregation , 1999, DMDW.

[34]  Maria T. Pazienza,et al.  Information Extraction , 2002, Lecture Notes in Computer Science.

[35]  Patrick Bosc,et al.  Some Algorithms for Evaluating Fuzzy Relational Queries , 1990, IPMU.

[36]  Peter M. D. Gray,et al.  Developing Finite Domain Constraints - A Data Model Approach , 2000, Computational Logic.

[37]  Weiru Liu,et al.  Logical reasoning with multiple granularities of uncertainty in semi-structured information , 2004 .

[38]  V. S. Subrahmanian,et al.  Stable Semantics for Probabilistic Deductive Databases , 1994, Inf. Comput..

[39]  W. Salmon,et al.  Knowledge in Flux , 1991 .

[40]  Dov M. Gabbay,et al.  Handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions , 1998 .

[41]  Patrick Bosc,et al.  Fuzzy databases : principles and applications , 1996 .

[42]  Anthony Hunter,et al.  Propositional Fusion Rules , 2003, ECSQARU.

[43]  Michael Pittarelli,et al.  The Theory of Probabilistic Databases , 1987, VLDB.

[44]  Diego Calvanese,et al.  Source integration in data warehousing , 1998, Proceedings Ninth International Workshop on Database and Expert Systems Applications (Cat. No.98EX130).

[45]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[46]  Hector Garcia-Molina,et al.  Template-based wrappers in the TSIMMIS system , 1997, SIGMOD '97.

[47]  Suk Kyoon Lee,et al.  Imprecise and uncertain information in databases: an evidential approach , 1992, [1992] Eighth International Conference on Data Engineering.

[48]  Jérôme Lang,et al.  Quantifying information and contradiction in propositional logic through test actions , 2003, IJCAI.

[49]  Peter Gärdenfors,et al.  Knowledge in Flux , 1988 .

[50]  Wesley W. Chu Cooperative Database Systems , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[51]  Diego Calvanese,et al.  Description Logic Framework for Information Integration , 1998, KR.

[52]  Laurence Cholvy Reasoning About Data Provided By Federated Deductive Databases , 2004, Journal of Intelligent Information Systems.

[53]  Anthony Hunter,et al.  Merging structured text using temporal knowledge , 2002, Data Knowl. Eng..

[54]  Nicolas Spyratos,et al.  Integration of information in four-valued logics under non-uniform assumptions , 2000, Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000).

[55]  H. V. Jagadish,et al.  ProTDB: Probabilistic Data in XML , 2002, VLDB.

[56]  Alberto O. Mendelzon,et al.  Tableau Techniques for Querying Information Sources through Global Schemas , 1999, ICDT.

[57]  李幼升,et al.  Ph , 1989 .

[58]  H. W. Kalfsbeek,et al.  Elicitation, assessment, and pooling of expert judgments using possibility theory , 1995, IEEE Trans. Fuzzy Syst..

[59]  Anthony Hunter,et al.  Logical fusion rules for merging structured news reports , 2002, Data Knowl. Eng..

[60]  Thomas Dyhre Nielsen,et al.  Symbolic and Quantitative Approaches to Reasoning with Uncertainty , 2003, Lecture Notes in Computer Science.

[61]  Bodo Rieger,et al.  Semantic Integration of Heterogeneous Information Sources , 2000, EFIS.