Atypical Thermonuclear Supernovae from Tidally Crushed White Dwarfs
暂无分享,去创建一个
[1] HO LUISC.,et al. The Astrophysical Journal. Preprint typeset using L ATEX style emulateapj v. 11/12/01 AN INTERMEDIATE-MASS BLACK HOLE IN THE GLOBULAR CLUSTER G1: IMPROVED SIGNIFICANCE FROM NEW KECK AND HUBBLE SPACE TELESCOPE OBSERVATIONS 1 , 2005 .
[2] Puragra Guhathakurta,et al. Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15. II. Kinematic Analysis and Dynamical Modeling , 2002, astro-ph/0209315.
[3] W. Benz. Smooth Particle Hydrodynamics: A Review , 1990 .
[4] Arnold H. Rots,et al. Chandra Observations of “The Antennae” Galaxies (NGC 4038/4039). III. X-Ray Properties and Multiwavelength Associations of the X-Ray Source Population , 2002 .
[5] J. R. Buchler,et al. The numerical modelling of nonlinear stellar pulsations: problems and prospects. Proceedings. , 1990 .
[6] William H. Press,et al. Dynamic mass exchange in doubly degenerate binaries I , 1990 .
[7] David Pooley,et al. X-Rays from the Globular Cluster G1: Intermediate-Mass Black Hole or Low-Mass X-Ray Binary? , 2006, astro-ph/0605049.
[8] Martin J. Rees,et al. Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .
[9] S. Zwart,et al. The ultraluminous X‐ray source in M82: an intermediate‐mass black hole with a giant companion , 2006, astro-ph/0602230.
[10] J. Craig Wheeler,et al. The Quasi-Equilibrium-reduced α-Network , 1998, The Astrophysical Journal.
[11] COSMOLOGICAL IMPLICATIONS FROM OBSERVATIONS OF TYPE IA SUPERNOVAE , 2001 .
[12] F. Douglas Swesty,et al. The Accuracy, Consistency, and Speed of an Electron-Positron Equation of State Based on Table Interpolation of the Helmholtz Free Energy , 2000 .
[13] J. Monaghan,et al. A Switch to Reduce SPH Viscosity , 1997 .
[14] L. G. J. Janssen. The Knowledge Center: Wind Turbine Materials and Constructions , 2003 .
[15] Junichiro Makino,et al. Formation of massive black holes through runaway collisions in dense young star clusters , 2004, Nature.
[16] Toshikazu Ebisuzaki,et al. MASSIVE BLACK HOLES IN STAR CLUSTERS. II. REALISTIC CLUSTER MODELS , 2004 .
[17] D. Balsara. von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms , 1995 .
[18] L. Ho,et al. An Intermediate-Mass Black Hole in the Globular Cluster G1: Improved Significance from New Keck and Hubble Space Telescope Observations , 2005, astro-ph/0508251.
[19] W. Hillebrandt,et al. Type IA Supernova Explosion Models , 2000 .
[20] Martin J. Rees,et al. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.
[21] V. Springel,et al. Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.
[22] L. Ho,et al. A 20,000 M☉ Black Hole in the Stellar Cluster G1 , 2002, astro-ph/0209313.
[23] J. Wilson,et al. WHITE DWARFS NEAR BLACK HOLES: A NEW PARADIGM FOR TYPE I SUPERNOVAE , 2003, astro-ph/0307337.
[24] Volker Springel,et al. Cosmological SPH simulations: The entropy equation , 2001 .
[25] Jean P. Brodie,et al. Extragalactic Globular Clusters and Galaxy Formation , 2006 .
[26] Charles R. Evans,et al. The tidal disruption of a star by a massive black hole , 1989 .
[27] Caltech,et al. Supernovae in Low-Redshift Galaxy Clusters: The Type Ia Supernova Rate , 2006, astro-ph/0610228.
[28] S. Rosswog,et al. Mergers of Neutron Star-Black Hole Binaries with Small Mass Ratios: Nucleosynthesis, Gamma-Ray Bursts, and Electromagnetic Transients , 2005, astro-ph/0508138.
[29] Daniel J. Price,et al. magma: a three-dimensional, Lagrangian magnetohydrodynamics code for merger applications , 2007, 0705.1441.
[30] J. Monaghan. SPH compressible turbulence , 2002, astro-ph/0204118.
[31] Mario Livio,et al. The First Type Ia Supernovae: An Empirical Approach to Taming Evolutionary Effects in Dark Energy Surveys from SNe Ia at z > 2 , 2006, astro-ph/0601319.