Inexact Halpern-type proximal point algorithm

We present several strong convergence results for the modified, Halpern-type, proximal point algorithm $${x_{n+1}=\alpha_{n}u+(1-\alpha_{n})J_{\beta_n}x_n+e_{n}}$$ (n = 0,1, . . .; $${u,\,x_0\in H}$$ given, and $${J_{\beta_n}=(I+\beta_nA)^{-1}}$$, for a maximal monotone operator A) in a real Hilbert space, under new sets of conditions on $${\alpha_n\in(0,1)}$$ and $${\beta_n\in(0,\infty)}$$. These conditions are weaker than those known to us and our results extend and improve some recent results such as those of H. K. Xu. We also show how to apply our results to approximate minimizers of convex functionals. In addition, we give convergence rate estimates for a sequence approximating the minimum value of such a functional.

[1]  Felix E. Browder,et al.  Convergence of approximants to fixed points of nonexpansive nonlinear mappings in banach spaces , 1967 .

[2]  Gheorghe Moroşanu,et al.  Nonlinear Evolution Equations and Applications , 1988 .

[3]  R. Wittmann Approximation of fixed points of nonexpansive mappings , 1992 .

[4]  Hong-Kun Xu Iterative Algorithms for Nonlinear Operators , 2002 .

[5]  Wataru Takahashi,et al.  Approximating Solutions of Maximal Monotone Operators in Hilbert Spaces , 2000 .

[6]  P. M. Pardalos,et al.  Mathematical Theory of Optimization (Nonconvex Optimization and Its Applications) , 2006 .

[7]  Hong-Kun Xu,et al.  A Regularization Method for the Proximal Point Algorithm , 2006, J. Glob. Optim..

[8]  Tomonari Suzuki,et al.  A sufficient and necessary condition for Halpern-type strong convergence to fixed points of nonexpansive mappings , 2006 .

[9]  O. A. Boikanyo,et al.  Modified Rockafellar ’ s algorithms , 2009 .

[10]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[11]  Yisheng Song,et al.  A note on a paper “A regularization method for the proximal point algorithm” , 2009, J. Glob. Optim..

[12]  P. Lions Approximation de Points Fixes de Contractions , 1977 .

[13]  Feng Gu,et al.  Viscosity approximation method for m-accretive mapping and variational inequality in Banach space , 2009 .

[14]  Gheorghe Morosanu,et al.  A proximal point algorithm converging strongly for general errors , 2010, Optim. Lett..

[15]  Panos M. Pardalos,et al.  Mathematical Theory of Optimization , 2001 .

[16]  C. O. Chidume,et al.  Iterative approximation of fixed points of nonexpansive mappings , 2006 .

[17]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[18]  A. Moudafi,et al.  Combining The Proximal Algorithm And Tikhonov Regularization , 1996 .