Electrochemical-Thermal Modelling and Optimisation of Lithium-Ion Battery Design Parameters Using Analysis of Variance

A 1D electrochemical-thermal model of an electrode pair of a lithium ion battery is developed in Comsol Multiphysics. The mathematical model is validated against the literature data for a 10 Ah lithium phosphate (LFP) pouch cell operating under 1 C to 5 C electrical load at 25 °C ambient temperature. The validated model is used to conduct statistical analysis of the most influential parameters that dictate cell performance; i.e., particle radius ( r p ); electrode thickness ( L p o s ); volume fraction of the active material ( e s , p o s ) and C-rate; and their interaction on the two main responses; namely; specific energy and specific power. To achieve an optimised window for energy and power within the defined range of design variables; the range of variation of the variables is determined based on literature data and includes: r p : 30–100 nm; L p o s : 20–100 μm; e s , p o s : 0.3–0.7; C-rate: 1–5. By investigating the main effect and the interaction effect of the design variables on energy and power; it is observed that the optimum energy can be achieved when (rp < 40 nm); (75 μm < Lpos < 100 μm); (0.4 < es,pos < 0.6) and while the C-rate is below 4C. Conversely; the optimum power is achieved for a thin electrode ( L p o s < 30 μm); with high porosity and high C-rate (5 C).

[1]  Venkat Srinivasan,et al.  Optimization of Lithium Titanate Electrodes for High-Power Cells , 2006 .

[2]  William Paul King,et al.  High power rechargeable batteries , 2012 .

[3]  Venkat R. Subramanian,et al.  Effect of Porosity, Thickness and Tortuosity on Capacity Fade of Anode , 2015 .

[4]  Venkat R. Subramanian,et al.  Model-Based SEI Layer Growth and Capacity Fade Analysis for EV and PHEV Batteries and Drive Cycles , 2014 .

[5]  Yun Cheng,et al.  An Electrochemical-thermal Model Based on Dynamic Responses for Lithium Iron Phosphate Battery , 2014 .

[6]  Afonso Cardoso Urbano Electro Thermal Modeling of Lithium-Ion Batteries , 2016 .

[7]  Fan Wang,et al.  Response Surface Optimization for Process Parameters of LiFePO4/C Preparation by Carbothermal Reduction Technology , 2012 .

[8]  Song-Yul Choe,et al.  Dynamic modeling and analysis of a pouch type LiMn2O4/Carbon high power Li-polymer battery based on electrochemical-thermal principles , 2012 .

[9]  K. Maute,et al.  A design optimization methodology for Li+ batteries , 2014 .

[10]  Michel Cervantes,et al.  Factorial design applied to CFD , 2004 .

[11]  Ralph E. White,et al.  Parameter Estimation and Model Discrimination for a Lithium-Ion Cell , 2007 .

[12]  Venkat Srinivasan,et al.  Optimizing the Performance of Lithium Titanate Spinel Paired with Activated Carbon or Iron Phosphate , 2008 .

[13]  Marc Doyle,et al.  Modeling the performance of rechargeable lithium-based cells: design correlations for limiting cases , 1995 .

[14]  Nigel P. Brandon,et al.  Coupled thermal–electrochemical modelling of uneven heat generation in lithium-ion battery packs , 2013 .

[15]  D. Bell Lawrence Berkeley Laboratory Master Emergency Plan , 1993 .

[16]  Sankhya Mohanty,et al.  Semi-empirical prediction of moisture build-up in an electronic enclosure using analysis of variance (ANOVA) , 2016, 2016 IEEE 18th Electronics Packaging Technology Conference (EPTC).

[17]  Davide Fabiani,et al.  Effect of oxide nanoparticles on thermal and mechanical properties of electrospun separators for lithium-ion batteries , 2012 .

[18]  E. Nazari,et al.  Establishing a Mathematical Model to Predict the Tensile Strength of Friction Stir Welded Pure Copper Joints , 2013, Metallurgical and Materials Transactions B.

[19]  Fangming Jiang,et al.  Thermal analyses of LiFePO4/graphite battery discharge processes , 2013 .

[20]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[21]  Pierluigi Leone,et al.  Computer experimental analysis of the CHP performance of a 100 kW e SOFC Field Unit by a factorial design , 2006 .

[22]  Horst Hahn,et al.  Thick Electrodes for High Energy Lithium Ion Batteries , 2015 .

[23]  Nyuk Hien Wong,et al.  The study of active stack effect to enhance natural ventilation using wind tunnel and computational fluid dynamics (CFD) simulations , 2004 .

[24]  Chao Lyu,et al.  Thermal-electrochemical Modeling and Parameter Sensitivity Analysis of Lithium-ion Battery , 2013 .

[25]  Julien Bernard,et al.  Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging , 2016 .

[26]  R. Braatz,et al.  Optimal Porosity Distribution for Minimized Ohmic Drop across a Porous Electrode , 2010 .

[27]  Ann Marie Sastry,et al.  Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials , 2010 .

[28]  Laisuo Su,et al.  Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments , 2016 .

[29]  Robert W. Zimmerman,et al.  The effect of contact area on the permeability of fractures , 1989 .

[30]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[31]  Taeyoung Lee,et al.  Geometric numerical integration for complex dynamics of tethered spacecraft , 2010, Proceedings of the 2011 American Control Conference.

[32]  Shan-Jen Cheng,et al.  Investigating the effects of operational factors on PEMFC performance based on CFD simulations using a three-level full-factorial design , 2012 .

[33]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[34]  John Newman,et al.  Optimization of Porosity and Thickness of a Battery Electrode by Means of a Reaction‐Zone Model , 1995 .

[35]  Xiaosong Huang,et al.  The effect of battery design parameters on heat generation and utilization in a Li-ion cell , 2012 .

[36]  Venkat Srinivasan,et al.  Design and Optimization of a Natural Graphite/Iron Phosphate Lithium-Ion Cell , 2004 .

[37]  Alejandro A. Franco,et al.  Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges , 2013 .

[38]  Ajay Kapoor,et al.  An improved theoretical electrochemical-thermal modelling of lithium-ion battery packs in electric vehicles , 2015 .

[39]  M. Pecht,et al.  A Bayesian approach for Li-Ion battery capacity fade modeling and cycles to failure prognostics , 2015 .

[40]  王凡,et al.  Response Surface Optimization for Process Parameters of LiFePO4/C Preparation by Carbothermal Reduction Technology , 2012 .

[41]  Rainer Helmig,et al.  Drying of a tape-cast layer: Numerical investigation of influencing parameters , 2017 .

[42]  Karim Zaghib,et al.  Understanding Rate-Limiting Mechanisms in LiFePO4 Cathodes for Li-Ion Batteries , 2011 .

[43]  Mehrdad Mastali,et al.  Electrochemical Modeling of Commercial LiFePO4 and Graphite Electrodes: Kinetic and Transport Properties and Their Temperature Dependence , 2016 .

[44]  Richard D. Braatz,et al.  Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective , 2010 .

[45]  G. Hinds,et al.  Parameter Sensitivity Analysis of Cylindrical LiFePO4 Battery Performance Using Multi-Physics Modeling , 2014 .

[46]  Jie Li,et al.  3D simulation on the internal distributed properties of lithium-ion battery with planar tabbed configuration , 2015 .

[47]  Tanvir R. Tanim,et al.  A Temperature Dependent, Single Particle, Lithium Ion Cell Model Including Electrolyte Diffusion , 2015 .

[48]  Stephen Duncan,et al.  Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter , 2015, ArXiv.

[49]  Ying Yu,et al.  In situ Fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation. , 2007, Environmental science & technology.

[50]  Po-Kai Tseng,et al.  Numerical optimization of heat transfer enhancement in a wavy channel using nanofluids , 2014 .

[51]  W. Shyy,et al.  Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance , 2010 .

[52]  Rachel E. Gerver,et al.  3D thermal-electrochemical lithium-ion battery computational modeling , 2009 .

[53]  Li Jia,et al.  Two-dimensional electrochemical–thermal coupled modeling of cylindrical LiFePO4 batteries , 2014 .

[54]  N. Omar,et al.  Impact of Tab Location on Large Format Lithium-Ion Pouch Cell Based on Fully Coupled Tree-Dimensional Electrochemical-Thermal Modeling , 2014 .

[55]  Pu Chen,et al.  Sensitivity analysis of a mathematical model of lithium–sulfur cells part I: Applied discharge current and cathode conductivity , 2014 .