Note on B-splines, wavelet scaling functions, and Gabor frames
暂无分享,去创建一个
Karlheinz Gröchenig | Norbert Kaiblinger | Augustus J. E. M. Janssen | Götz E. Pfander | K. Gröchenig | A. Janssen | G. Pfander | Norbert Kaiblinger | N. Kaiblinger
[1] I. Daubechies,et al. Frames in the Bargmann Space of Entire Functions , 1988 .
[2] C. Micchelli,et al. Stationary Subdivision , 1991 .
[3] K. Seip. Density theorems for sampling and interpolation in the Bargmann-Fock space I , 1992, math/9204238.
[4] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[5] K. Seip,et al. Density theorems for sampling and interpolation in the Bargmann-Fock space II. , 1992 .
[6] A. Ron,et al. Weyl-Heisenberg Frames and Riesz Bases in L2(Rd). , 1994 .
[7] A. Janssen. From continuous to discrete Weyl-Heisenberg frames through sampling , 1997 .
[8] A. Ron,et al. Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .
[9] A. Janssen. The duality condition for Weyl-Heisenberg frames , 1998 .
[10] Günter M. Ziegler,et al. On cohomology algebras of complex subspace arrangements , 2000 .
[11] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[12] T. Strohmer,et al. Hyperbolic secants yield Gabor frames , 2002, math/0301134.
[13] H. Feichtinger,et al. Varying the time-frequency lattice of Gabor frames , 2003 .
[14] A. Janssen. On Generating Tight Gabor Frames at Critical Density , 2003 .
[15] Resear,et al. Zak Transforms With Few Zeros and the Tie , 2022 .