High-Power Diode Laser Technology and Characteristics

Laser operation relies on two conditions, stimulated emission of the amplifying medium and feedback by an optical resonator. The threshold of laser operation is obtained if the gain in the resonator compensates for the overall losses, i.e., the propagation losses and the apparent losses due to the extraction of light [2.1]. Both common laser conditions are satisfied in diode lasers in another way than in typical gas or solid-state lasers. The resonator is given by the semiconductor structure itself using the crystal facets as mirrors. The gain in diode lasers involves a whole crystal structure and not only excited single atoms, ions, or molecules. Modern semiconductor lasers restrict the excited volume to reduce the threshold current by applying quantum wells or quantum dots. Technically, this is achieved by growing very thin layers consisting of different crystal compositions for quantum wells or by applying two-dimensional growth for quantum dots. A scheme of a diode laser is shown in Fig. 2.1. The following chapter takes a short tour through the excitation of high-power semiconductor lasers by examining the current injection of carriers, the optical gain, and appropriate resonator structures. More detailed descriptions of several aspects can be found in several textbooks [2.2, 2.3].

[1]  R. A. Pethrick Introduction to microlithography (2nd edition). Edited by L. F. Thompson, C. G. Willson and M. J. Bowden. American Chemical Society, Washington, D.C., 1994. pp. xiv + 527, price US$59.95. ISBN 0‐8412‐2848‐5 , 1995 .

[2]  L. Mawst,et al.  Temperature sensitivity of 1300-nm InGaAsN quantum-well lasers , 2002, IEEE Photonics Technology Letters.

[3]  H. Brugger,et al.  Mapping of local temperatures on mirrors of GaAs/AlGaAs laser diodes , 1990 .

[4]  Michael Mikulla,et al.  Tapered High-Power, High-Brightness Diode Lasers: Design and Performance , 2000 .

[5]  B. Sverdlov,et al.  Ultra-high power RWG laser diodes with lateral absorber region , 2002, IEEE 18th International Semiconductor Laser Conference.

[6]  Michael Mikulla,et al.  High-brightness 1040-nm tapered diode lasers , 2003, Photonics Fabrication Europe.

[7]  G. B. Stringfellow Organometallic Vapor-Phase Epitaxy: Theory and Practice , 1989 .

[8]  D. Webb,et al.  Raman microprobe study of the time development of AlGaAs single quantum well laser facet temperature on route to catastrophic breakdown , 1991 .

[9]  J. N. Walpole,et al.  Semiconductor amplifiers and lasers with tapered gain regions , 1996 .

[10]  D. Welch,et al.  Numerical analysis of flared semiconductor laser amplifiers , 1993 .

[11]  D. Welch,et al.  Operating characteristics of a high-power monolithically integrated flared amplifier master oscillator power amplifier , 1993 .

[12]  D. M. Mattox Arc Vapor Deposition , 1998 .

[13]  John G. Simmons,et al.  Temperature sensitivity of strained multiple quantum well long-wavelength semiconductor lasers: root cause analysis and the effects of varying device structure , 1997, Photonics West.

[14]  H. M. Manasevit,et al.  The Use of Metal‐Organics in the Preparation of Semiconductor Materials II . II – VI Compounds , 1971 .

[15]  Osamu Ueda,et al.  Reliability and degradation of III-V optical devices , 1996 .

[16]  J. Morgan,et al.  Mounting-induced strain threshold for the degradation of high-power AlGaAs laser bars , 2002, IEEE Photonics Technology Letters.

[17]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[18]  L. Tu,et al.  IN-VACUUM CLEAVING AND COATING OF SEMICONDUCTOR LASER FACETS USING THIN SILICON AND A DIELECTRIC , 1996 .

[19]  Ramon U. Martinelli,et al.  14.3 W quasicontinuous wave front-facet power from broad-waveguide Al-free 970 nm diode lasers , 1997 .

[20]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[21]  H. M. Manasevit,et al.  The Use of Metal‐Organics in the Preparation of Semiconductor Materials I . Epitaxial Gallium‐ V Compounds , 1969 .

[22]  Nils William Carlson Monolithic Diode‐laser Arrays , 1994 .

[23]  Rolf Aidam,et al.  High-power high-brightness ridge-waveguide tapered diode lasers at 14xx nm , 2005, SPIE OPTO.

[24]  Katrin Paschke,et al.  Properties of ion-implanted high-power angled-grating distributed-feedback lasers , 2003 .

[25]  G. Dente,et al.  Low confinement factors for suppressed filaments in semiconductor lasers , 2001 .

[26]  Thomas Elsaesser,et al.  Facet degradation of high-power diode laser arrays , 2000 .

[27]  W. Richter,et al.  Real-time analysis of III–V-semiconductor epitaxial growth , 1996 .

[28]  Kazuhiko Itaya,et al.  Temperature dependence of the threshold current for InGaAlP visible laser diodes , 1991 .

[29]  John C. Connolly,et al.  High-power separate-confinement heterostructure AlGaAs/GaAs laser diodes with broadened waveguide , 1996, Photonics West.

[30]  S. Chinn,et al.  High-power, strained-layer amplifiers and lasers with tapered gain regions , 1993, IEEE Photonics Technology Letters.

[31]  J. Tomm,et al.  Emitter failure and thermal facet load in high-power laser diode arrays , 1998 .

[32]  A. Haug Relations between theT0 values of bulk and quantum-well GaAs , 1987 .

[33]  Martin Walther,et al.  High-power high-brightness ridge-waveguide tapered diode lasers at 940 nm , 2002, SPIE OPTO.

[34]  Jens W. Tomm,et al.  Spatially resolved spectroscopic strain measurements on high-power laser diode bars , 2003 .

[35]  Martin Walther,et al.  High-power 980-nm semiconductor lasers by MBE , 2001, SPIE/OSA/IEEE Asia Communications and Photonics.

[36]  Thomas Elsaesser,et al.  Simultaneous quantification of strain and defects in high-power diode laser devices , 2002 .

[37]  H. Lu,et al.  High-temperature single-mode operation of 1.3-μm strained MQW gain-coupled DFB lasers , 1995, IEEE Photonics Technology Letters.

[38]  M. Leys,et al.  A study of the growth mechanism of epitaxial GaAs as grown by the technique of metal organic vapour phase epitaxy , 1981 .

[39]  S. Todoroki,et al.  Temperature distribution along the striped active region in high‐power GaAlAs visible lasers , 1985 .

[40]  Michael Mikulla,et al.  Beam quality and linewidth enhancement factor of ridge-waveguide tapered diode lasers , 2002, IEEE 18th International Semiconductor Laser Conference.

[41]  Gerhard Abstreiter,et al.  Reduction of mirror temperature in GaAs/AlGaAs quantum well laser diodes with segmented contacts , 1991 .

[42]  E. Thamm,et al.  Facet temperature reduction by a current blocking layer at the front facets of high-power InGaAs/AlGaAs lasers , 2003 .

[43]  Wilfried Lenth,et al.  Localised temperature dynamics of GaAlAs laser facets investigated by Raman microprobe measurements , 1990 .

[44]  Thomas Elsaesser,et al.  Device deformation during low-frequency pulsed operation of high-power diode bars , 2004 .

[45]  Stephen R. Forrest,et al.  Photoluminescence study of excess carrier spillover in 1.3 μm wavelength strained multi‐quantum‐well InGaAsP/InP laser structures , 1995 .

[46]  Roland Diehl,et al.  High-Power Diode Lasers , 2000 .

[47]  A. Moser,et al.  Arrhenius parameters for the rate process leading to catastrophic damage of AlGaAs‐GaAs laser facets , 1992 .

[48]  H. M. Manasevit The use of metalorganics in the preparation of semiconductor materials: Growth on insulating substrates , 1972 .

[49]  S. Ghandhi,et al.  Deposition of GaAs Epitaxial Layers by Organometallic CVD Temperature and Orientation Dependence , 1983 .

[50]  A. Wetzel,et al.  High-brightness tapered semiconductor laser oscillators and amplifiers with low-modal gain epilayer-structures , 1998, IEEE Photonics Technology Letters.

[51]  R. Lang,et al.  5-W CW diffraction-limited InGaAs broad-area flared amplifier at 970 nm , 1997, IEEE Photonics Technology Letters.

[52]  S. Brueck,et al.  Gain, refractive index change, and linewidth enhancement factor in broad-area GaAs and InGaAs quantum-well lasers , 2001 .

[53]  Michael Mikulla,et al.  Astigmatism and beam quality of high-brightness tapered diode lasers , 2004, SPIE Photonics Europe.

[54]  D. Shaw KINETIC ASPECTS IN THE VAPOUR PHASE EPITAXY OF III–V COMPOUNDS , 1975 .