Pricing Asian options in a stochastic volatility model with jumps

We consider the problem of pricing arithmetic Asian options in the presence of stochastic volatility. By performing a change of numeraire introduced by [email protected][email protected]?r, we derive a partial integro-differential equation (PIDE) for Asian options within Barndorff-Nielsen and Shephard (BNS) model framework. Then, a finite difference discretization is proposed for dealing with the terms containing the partial derivatives and a simple trapezoidal rule is used for the integral term due to jumps. Numerical experiments confirm that the developed methods are very efficient.

[1]  A. Kemna,et al.  A pricing method for options based on average asset values , 1990 .

[2]  L. Rogers,et al.  The value of an Asian option , 1995, Journal of Applied Probability.

[3]  Jin E. Zhang Pricing continuously sampled Asian options with perturbation method , 2003 .

[4]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[5]  A. Jacquier,et al.  Robust Approximations for Pricing Asian Options and Volatility Swaps Under Stochastic Volatility , 2010 .

[6]  S. Posner,et al.  Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution , 1998 .

[7]  Jianwei Zhu,et al.  Stochastic Volatility With an Ornstein-Uhlenbeck Process: An Extension , 1998 .

[8]  G. Meyer,et al.  The Evaluation of American Option Prices Under Stochastic Volatility and Jump-Diffusion Dynamics Using the Method of Lines , 2008 .

[9]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[10]  Louis O. Scott Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application , 1987, Journal of Financial and Quantitative Analysis.

[11]  George Labahn,et al.  A Semi-Lagrangian Approach for American Asian Options under Jump Diffusion , 2005, SIAM J. Sci. Comput..

[12]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[13]  E. Nicolato,et al.  Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type , 2003 .

[14]  Edmond Levy Pricing European average rate currency options , 1992 .

[15]  J. Ingersoll Theory of Financial Decision Making , 1987 .

[16]  P. Carr,et al.  Bessel processes, the integral of geometric Brownian motion, and Asian options , 2003, math/0311280.

[17]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[18]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[19]  M. Fu,et al.  Pricing Continuous Asian Options: A Comparison of Monte Carlo and Laplace Transform Inversion Methods , 1998 .

[20]  Giacomo Ziglio,et al.  Itô formula for stochastic integrals w.r.t. compensated Poisson random measures on separable Banach spaces , 2006 .

[21]  Jan Vecer,et al.  Pricing Asian options in a semimartingale model , 2004 .

[22]  Jan Vecer Black–Scholes Representation for Asian Options , 2012 .

[23]  Jean-Pierre Fouque,et al.  Pricing Asian options with stochastic volatility , 2003 .

[24]  Jin E. Zhang A Semi-Analytical Method for Pricing and Hedging Continuously Sampled Arithmetic Average Rate Options , 2001 .

[25]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[26]  S. Turnbull,et al.  A Quick Algorithm for Pricing European Average Options , 1991, Journal of Financial and Quantitative Analysis.

[27]  François Dubois,et al.  Efficient Pricing of Asian Options by the PDE Approach , 2004 .

[28]  J. Vecer A new PDE approach for pricing arithmetic average Asian options , 2001 .

[29]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[30]  Arvid Raknerud,et al.  Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck processes , 2012, Comput. Stat. Data Anal..