Pricing Asian options in a stochastic volatility model with jumps
暂无分享,去创建一个
[1] A. Kemna,et al. A pricing method for options based on average asset values , 1990 .
[2] L. Rogers,et al. The value of an Asian option , 1995, Journal of Applied Probability.
[3] Jin E. Zhang. Pricing continuously sampled Asian options with perturbation method , 2003 .
[4] Alan G. White,et al. The Pricing of Options on Assets with Stochastic Volatilities , 1987 .
[5] A. Jacquier,et al. Robust Approximations for Pricing Asian Options and Volatility Swaps Under Stochastic Volatility , 2010 .
[6] S. Posner,et al. Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution , 1998 .
[7] Jianwei Zhu,et al. Stochastic Volatility With an Ornstein-Uhlenbeck Process: An Extension , 1998 .
[8] G. Meyer,et al. The Evaluation of American Option Prices Under Stochastic Volatility and Jump-Diffusion Dynamics Using the Method of Lines , 2008 .
[9] E. Stein,et al. Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .
[10] Louis O. Scott. Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application , 1987, Journal of Financial and Quantitative Analysis.
[11] George Labahn,et al. A Semi-Lagrangian Approach for American Asian Options under Jump Diffusion , 2005, SIAM J. Sci. Comput..
[12] P. Glasserman,et al. Monte Carlo methods for security pricing , 1997 .
[13] E. Nicolato,et al. Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type , 2003 .
[14] Edmond Levy. Pricing European average rate currency options , 1992 .
[15] J. Ingersoll. Theory of Financial Decision Making , 1987 .
[16] P. Carr,et al. Bessel processes, the integral of geometric Brownian motion, and Asian options , 2003, math/0311280.
[17] N. Shephard,et al. Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .
[18] M. Yor,et al. BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .
[19] M. Fu,et al. Pricing Continuous Asian Options: A Comparison of Monte Carlo and Laplace Transform Inversion Methods , 1998 .
[20] Giacomo Ziglio,et al. Itô formula for stochastic integrals w.r.t. compensated Poisson random measures on separable Banach spaces , 2006 .
[21] Jan Vecer,et al. Pricing Asian options in a semimartingale model , 2004 .
[22] Jan Vecer. Black–Scholes Representation for Asian Options , 2012 .
[23] Jean-Pierre Fouque,et al. Pricing Asian options with stochastic volatility , 2003 .
[24] Jin E. Zhang. A Semi-Analytical Method for Pricing and Hedging Continuously Sampled Arithmetic Average Rate Options , 2001 .
[25] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[26] S. Turnbull,et al. A Quick Algorithm for Pricing European Average Options , 1991, Journal of Financial and Quantitative Analysis.
[27] François Dubois,et al. Efficient Pricing of Asian Options by the PDE Approach , 2004 .
[28] J. Vecer. A new PDE approach for pricing arithmetic average Asian options , 2001 .
[29] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[30] Arvid Raknerud,et al. Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck processes , 2012, Comput. Stat. Data Anal..