Understanding the electrocatalysis of oxygen reduction on platinum and its alloys

The high cost of low temperature fuel cells is to a large part dictated by the high loading of Pt required to catalyse the oxygen reduction reaction (ORR). Arguably the most viable route to decrease the Pt loading, and to hence commercialise these devices, is to improve the ORR activity of Pt by alloying it with other metals. In this perspective paper we provide an overview of the fundamentals underlying the reduction of oxygen on platinum and its alloys. We also report the ORR activity of Pt5La for the first time, which shows a 3.5- to 4.5-fold improvement in activity over Pt in the range 0.9 to 0.87 V, respectively. We employ angle resolved X-ray photoelectron spectroscopy and density functional theory calculations to understand the activity of Pt5La.

[1]  J. G. Chen,et al.  Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. , 2004, The Journal of chemical physics.

[2]  A. Gross,et al.  Water bilayer on the Pd/Au(1 1 1) overlayer system: Coadsorption and electric field effects , 2005 .

[3]  Steven G. Rinaldo,et al.  Physical Theory of Platinum Nanoparticle Dissolution in Polymer Electrolyte Fuel Cells , 2010 .

[4]  T. Jaramillo,et al.  A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. , 2010, Journal of the American Chemical Society.

[5]  Manos Mavrikakis,et al.  Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces , 2008 .

[6]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .

[7]  P. Ross,et al.  CO chemisorption on the 61119 and 61009 oriented single crystal surfaces of the alloy CoPt3*1 , 1990 .

[8]  Mark K. Debe,et al.  High voltage stability of nanostructured thin film catalysts for PEM fuel cells , 2006 .

[9]  C. Friesen,et al.  Electrochemical stability of elemental metal nanoparticles. , 2010, Journal of the American Chemical Society.

[10]  R. Parsons The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen , 1958 .

[11]  Jingguang G. Chen,et al.  Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. , 2010, Angewandte Chemie.

[12]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[13]  Yoshitada Morikawa,et al.  First-principles molecular dynamics simulation of biased electrode/solution interface , 2007 .

[14]  M. Johansson,et al.  Catalytic oxidation of graphite by mass-selected ruthenium nanoparticles , 2011 .

[15]  Wenbin Gu,et al.  Performance of Nano Structured Thin Film (NSTF) Electrodes under Partially-Humidified Conditions , 2011 .

[16]  J. Kollár,et al.  The surface energy of metals , 1998 .

[17]  Younan Xia,et al.  Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction , 2009, Science.

[18]  S. Ball,et al.  PtCo, a Durable Catalyst for Automotive PEMFC? , 2007 .

[19]  H. Angerstein-Kozlowska,et al.  The real condition of electrochemically oxidized platinum surfaces , 1973 .

[20]  P. Sabatier,et al.  Hydrogénations et déshydrogénations par catalyse , 1911 .

[21]  M. Mavrikakis,et al.  Platinum Monolayer Fuel Cell Electrocatalysts , 2007 .

[22]  F. Maillard,et al.  Further insights into the durability of Pt3Co/C electrocatalysts: Formation of “hollow” Pt nanoparticles induced by the Kirkendall effect , 2011 .

[23]  H. Gasteiger,et al.  Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode , 2010 .

[24]  I. Chorkendorff,et al.  Minimizing the use of platinum in hydrogen-evolving electrodes. , 2011, Angewandte Chemie.

[25]  Ib Chorkendorff,et al.  Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. , 2010, Journal of the American Chemical Society.

[26]  M. Matsumoto,et al.  Oxygen-Enhanced Dissolution of Platinum in Acidic Electrochemical Environments , 2011 .

[27]  Mark K. Debe,et al.  Oxygen reduction activity of Pt and Pt–Mn–Co electrocatalysts sputtered on nano-structured thin film support , 2007 .

[28]  D. Su,et al.  Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. , 2010, Journal of the American Chemical Society.

[29]  Yimin Zhu,et al.  Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection--absorption spectroscopy , 2000 .

[30]  V. Climent,et al.  Potential of zero total charge of platinum single crystals: A local approach to stepped surfaces vicinal to Pt(111) , 2006 .

[31]  Jingguang G. Chen,et al.  Regenerating Pt–3d–Pt model electrocatalysts through oxidation–reduction cycles monitored at atmospheric pressure , 2010 .

[32]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[33]  P. Balbuena,et al.  Atomic Oxygen Absorption into Pt-Based Alloy Subsurfaces , 2008 .

[34]  Manos Mavrikakis,et al.  Reactivity descriptors for direct methanol fuel cell anode catalysts , 2008 .

[35]  M. Koper,et al.  Ab initio studies of a water layer at transition metal surfaces. , 2005, The Journal of chemical physics.

[36]  D. T. Napp,et al.  A ring-disk electrode study of the current/potential behaviour of platinum in 1.0 M sulphuric and 0.1 M perchloric acids , 1970 .

[37]  J. Nørskov,et al.  Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt , 2011 .

[38]  Junliang Zhang,et al.  Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. , 2005, Angewandte Chemie.

[39]  T. Uruga,et al.  In situ time-resolved dynamic surface events on the Pt/C cathode in a fuel cell under operando conditions. , 2007, Angewandte Chemie.

[40]  Minhua Shao,et al.  Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. , 2011, Nano letters.

[41]  Thomas Bligaard,et al.  The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .

[42]  Jingguang G. Chen,et al.  Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations , 2011 .

[43]  Hubert A. Gasteiger,et al.  Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes , 2010 .

[44]  M. Arenz,et al.  Adsorbate-induced surface segregation for core-shell nanocatalysts. , 2009, Angewandte Chemie.

[45]  F. Maillard,et al.  Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: Direct evidence of bulk Co segregation to the surface , 2010 .

[46]  Lijun Wu,et al.  Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. , 2009, Journal of the American Chemical Society.

[47]  Chi-Jen Yang An impending platinum crisis and its implications for the future of the automobile , 2009 .

[48]  T. Lim,et al.  Enhanced stability and activity of Pt-Y alloy catalysts for electrocatalytic oxygen reduction. , 2011, Chemical communications.

[49]  M. Watanabe,et al.  In situ STM observation of morphological changes of the Pt(111) electrode surface during potential cycling in 10 mM HF solution. , 2010, Physical chemistry chemical physics : PCCP.

[50]  Matthew Neurock,et al.  Engineering Molecular Transformations for Sustainable Energy Conversion , 2010 .

[51]  M. Arenz,et al.  Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. , 2009, Journal of the American Chemical Society.

[52]  Angelos Michaelides,et al.  A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt , 2001 .

[53]  J Rossmeisl,et al.  Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. , 2007, Physical chemistry chemical physics : PCCP.

[54]  Daan Frenkel,et al.  The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. , 2004, Physical review letters.

[55]  Jens K. Nørskov,et al.  Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction , 2009 .

[56]  P. Blöchl,et al.  Projector augmented wave method:ab initio molecular dynamics with full wave functions , 2002, cond-mat/0201015.

[57]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[58]  Jingguang G. Chen,et al.  Theoretical Prediction and Experimental Verification of Stability of Pt–3d–Pt Subsurface Bimetallic Structures: From Single Crystal Surfaces to Polycrystalline Films , 2010 .

[59]  Titus V. Albu,et al.  Ab Initio Determination of Reversible Potentials and Activation Energies for Outer-Sphere Oxygen Reduction to Water and the Reverse Oxidation Reaction , 1999 .

[60]  Egill Skúlason,et al.  Modeling the electrified solid-liquid interface , 2008 .

[61]  J. Nørskov,et al.  Ammonia Synthesis from First-Principles Calculations , 2005, Science.

[62]  P. Stonehart,et al.  Potential cycling effects on platinum electrocatalyst surfaces , 1973 .

[63]  Piotr Zelenay,et al.  A class of non-precious metal composite catalysts for fuel cells , 2006, Nature.

[64]  Y. Shao-horn,et al.  Origin of Oxygen Reduction Reaction Activity on “Pt3Co” Nanoparticles: Atomically Resolved Chemical Compositions and Structures , 2009 .

[65]  Mallika Gummalla,et al.  Systematic Study on the Impact of Pt Particle Size and Operating Conditions on PEMFC Cathode Catalyst Durability , 2011 .

[66]  U. Bergmann,et al.  In situ X-ray probing reveals fingerprints of surface platinum oxide. , 2011, Physical Chemistry, Chemical Physics - PCCP.

[67]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[68]  Junliang Zhang,et al.  Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles , 2004 .

[69]  D. Vlachos,et al.  Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction , 2010, Nature Chemistry.

[70]  Thomas Bligaard,et al.  Electrochemical chlorine evolution at rutile oxide (110) surfaces. , 2010, Physical chemistry chemical physics : PCCP.

[71]  F. Maillard,et al.  Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation , 2010 .

[72]  Yu Morimoto,et al.  First Principles Calculations on Site-Dependent Dissolution Potentials of Supported and Unsupported Pt Particles , 2010 .

[73]  I. Chorkendorff,et al.  Identical locations transmission electron microscopy study of Pt/C electrocatalyst degradation durin , 2011 .

[74]  Ib Chorkendorff,et al.  The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. , 2012, Angewandte Chemie.

[75]  J. Tollefson Worth its weight in platinum , 2007, Nature.

[76]  Matthew Thorum,et al.  Oxygen reduction activity of a copper complex of 3,5-diamino-1,2,4-triazole supported on carbon black. , 2009, Angewandte Chemie.

[77]  A. Bondarenko,et al.  Oxygen Electroreduction Activity and X‐Ray Photoelectron Spectroscopy of Platinum and Early Transition Metal Alloys , 2012 .

[78]  N. Marković,et al.  Segregation and stability at Pt3Ni(111) surfaces and Pt75Ni25 nanoparticles , 2008 .

[79]  M. Inaba Durability of Electrocatalysts in Polymer Electrolyte Fuel Cells , 2009 .

[80]  Ib Chorkendorff,et al.  Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. , 2011, Journal of the American Chemical Society.

[81]  Jun Zhang,et al.  Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra. , 2010, Nano letters.

[82]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[83]  Michio Koinuma,et al.  Photoreaction of Graphene Oxide Nanosheets in Water , 2011 .

[84]  Ping Liu,et al.  Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. , 2010, Angewandte Chemie.

[85]  Karren L. More,et al.  Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse PtxNi1‐x Nanoparticles , 2011 .

[86]  J. Nørskov,et al.  Effect of Strain on the Reactivity of Metal Surfaces , 1998 .

[87]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[88]  Miaofang Chi,et al.  Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. , 2011, Journal of the American Chemical Society.

[89]  Jianbo Wu,et al.  Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. , 2011, Nano letters.

[90]  Frédéric Jaouen,et al.  Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells , 2009, Science.

[91]  Thomas Bligaard,et al.  Pareto-optimal alloys , 2003 .

[92]  Thomas Bligaard,et al.  The nature of the active site in heterogeneous metal catalysis. , 2008, Chemical Society reviews.

[93]  Enzymatic versus inorganic oxygen reduction catalysts: comparison of the energy levels in a free-energy scheme. , 2010, Inorganic chemistry.

[94]  Kenneth C. Neyerlin,et al.  Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR) , 2009 .

[95]  Gauthier,et al.  Surface-sandwich segregation on nondilute bimetallic alloys: Pt50Ni50 and Pt78Ni22 probed by low-energy electron diffraction. , 1985, Physical review. B, Condensed matter.

[96]  A. Kuzume,et al.  Oxygen reduction on stepped platinum surfaces in acidic media , 2007 .

[97]  Ping Liu,et al.  Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. , 2011, Journal of the American Chemical Society.

[98]  Jan Rossmeisl,et al.  Density functional studies of functionalized graphitic materials with late transition metals for Oxygen Reduction Reactions. , 2011, Physical chemistry chemical physics : PCCP.

[99]  K. Ota,et al.  Deterioration of Pt Catalyst Under Potential Cycling , 2006 .

[100]  G. Karlberg,et al.  An interaction model for OH + H2O-mixed and pure H2O overlayers adsorbed on Pt(111). , 2005, The Journal of chemical physics.

[101]  P. Feibelman Partial Dissociation of Water on Ru(0001) , 2002, Science.

[102]  Mahlon Wilson,et al.  Scientific aspects of polymer electrolyte fuel cell durability and degradation. , 2007, Chemical reviews.

[103]  Junliang Zhang,et al.  Truncated octahedral Pt(3)Ni oxygen reduction reaction electrocatalysts. , 2010, Journal of the American Chemical Society.

[104]  Michael F Toney,et al.  Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. , 2010, Nature chemistry.

[105]  J. Jorné,et al.  Study of the Exchange Current Density for the Hydrogen Oxidation and Evolution Reactions , 2007 .

[106]  O. Sakata,et al.  Surface X-ray scattering of stepped surfaces of platinum in an electrochemical environment: Pt(331) = 3(111)-(111) and Pt(511) = 3(100)-(111). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[107]  Edward F. Holby,et al.  Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells , 2007 .

[108]  M. Delucchi,et al.  The impact of widespread deployment of fuel cell vehicles on platinum demand and price , 2011 .

[109]  H. Okamoto La-Pt (Lanthanum-Platinum) , 2008 .

[110]  G. Ceder,et al.  Electrochemical stability of nanometer-scale Pt particles in acidic environments. , 2010, Journal of the American Chemical Society.

[111]  Ulrich Eberle,et al.  Sustainable transportation based on electric vehicle concepts: a brief overview , 2010 .

[112]  Jens K Nørskov,et al.  Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. , 2006, Angewandte Chemie.

[113]  Jingguang G. Chen,et al.  General trend for adsorbate-induced segregation of subsurface metal atoms in bimetallic surfaces. , 2009, The Journal of chemical physics.

[114]  Matthew Neurock,et al.  First-Principles Analysis of the Initial Electroreduction Steps of Oxygen over Pt(111) , 2009 .

[115]  N. Marković,et al.  Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. , 2006, Journal of the American Chemical Society.

[116]  M. Arenz,et al.  Measurement of oxygen reduction activities via the rotating disc electrode method : from Pt model surfaces to carbon-supported high surface area catalysts. , 2008 .

[117]  Robert M. Darling,et al.  Kinetic Model of Platinum Dissolution in PEMFCs , 2003 .

[118]  Matthew Neurock,et al.  Elucidation of the electrochemical activation of water over Pd by first principles. , 2006, Angewandte Chemie.

[119]  M. Mavrikakis,et al.  Nanocatalysis beyond the gold-rush era. , 2008, Angewandte Chemie.

[120]  M. Mavrikakis,et al.  Improving electrocatalysts for O(2) reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy. , 2009, Journal of the American Chemical Society.

[121]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[122]  W. O'grady,et al.  Determination of O and OH adsorption sites and coverage in situ on Pt electrodes from Pt L(2,3) X-ray absorption spectroscopy. , 2005, The journal of physical chemistry. B.

[123]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[124]  S. Mukerjee,et al.  Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation , 1998 .

[125]  M. Koper,et al.  Co-adsorption of water and hydroxyl on a Pt2Ru surface , 2006 .

[126]  K. Itaya,et al.  In situ electrochemical scanning tunneling microscopy of single‐crystal surfaces of Pt(111), Rh(111), and Pd(111) in aqueous sulfuric acid solution , 1991 .

[127]  D. J. Mowbray,et al.  Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces , 2010, 1002.4834.

[128]  M. Odelius,et al.  Structure and bonding of the water-hydroxyl mixed phase on Pt(111) , 2007 .

[129]  A. Gross,et al.  Tuning catalytic properties of bimetallic surfaces: Oxygen adsorption on pseudomorphic Pt/Ru overlayers , 2007 .

[130]  Kingo Itaya,et al.  In situ scanning tunneling microscopy of platinum (111) surface with the observation of monatomic steps , 1990 .

[131]  L. C. Gontard,et al.  Three‐dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black , 2008, Journal of microscopy.

[132]  D. Muller,et al.  Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. , 2010, Journal of the American Chemical Society.

[133]  Jens K. Nørskov,et al.  Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations , 2007 .

[134]  Ib Chorkendorff,et al.  The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[135]  George M Whitesides,et al.  Don't Forget Long-Term Fundamental Research in Energy , 2007, Science.

[136]  M. Matsumoto,et al.  In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media. , 2009, Journal of the American Chemical Society.

[137]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[138]  K. Swider-Lyons,et al.  Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. , 2010, Analytical chemistry.

[139]  Thomas Bligaard,et al.  Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations , 2010 .

[140]  Ib Chorkendorff,et al.  Adsorption-driven surface segregation of the less reactive alloy component. , 2009, Journal of the American Chemical Society.

[141]  M. Arenz,et al.  The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. , 2011, Journal of the American Chemical Society.

[142]  Gang Wu,et al.  High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt , 2011, Science.

[143]  Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell. , 2011, Nano letters.

[144]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[145]  Hiroyuki Uchida,et al.  Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co , 1999 .

[146]  Shouheng Sun,et al.  A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. , 2008, Angewandte Chemie.

[147]  J. Nørskov,et al.  Ligand effects in heterogeneous catalysis and electrochemistry , 2007 .

[148]  J. Nørskov,et al.  Theoretical Trends in Particle Size Effects for the Oxygen Reduction Reaction , 2007 .

[149]  A. Vojvodić,et al.  Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[150]  E. Solomon,et al.  Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.

[151]  J. Clavilier,et al.  Electrochemistry at platinum single crystal surfaces in acidic media : hydrogen and oxygen adsorption , 1991 .

[152]  Hiroyuki Uchida,et al.  In situ STM imaging of surface dissolution and rearrangement of a Pt-Fe alloy electrocatalyst in electrolyte solution. , 2002, Chemical communications.

[153]  D. Nordlund,et al.  Degradation of bimetallic model electrocatalysts: an in situ X-ray absorption spectroscopy study. , 2011, Angewandte Chemie.

[154]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[155]  Philip N. Ross,et al.  Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability , 2007, Science.

[156]  A. Wokaun,et al.  Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes , 2002 .

[157]  Hideo Daimon,et al.  Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. , 2011, Nano letters.

[158]  Sanjeev Mukerjee,et al.  Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells , 1993 .

[159]  P. Strasser,et al.  Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. , 2007, Journal of the American Chemical Society.

[160]  J. Nørskov,et al.  Combined electronic structure and evolutionary search approach to materials design. , 2002, Physical review letters.

[161]  W. Gu,et al.  Durable PEM Fuel Cell Electrode Materials: Requirements and Benchmarking Methodologies , 2006 .

[162]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[163]  Sanjeev Mukerjee,et al.  Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction An In Situ XANES and EXAFS Investigation , 1995 .

[164]  J. Nørskov,et al.  Universality in Heterogeneous Catalysis , 2002 .

[165]  E. Baerends,et al.  Reactive and Nonreactive Scattering of H2 from a Metal Surface Is Electronically Adiabatic , 2006, Science.

[166]  S. Haq,et al.  Hydrogen bonding in mixed OH+H2O overlayers on Pt(111). , 2004, Physical review letters.

[167]  Robert M. Darling,et al.  Mathematical Model of Platinum Movement in PEM Fuel Cells , 2005 .

[168]  Matthew Thorum,et al.  Electroreduction of dioxygen for fuel-cell applications: materials and challenges. , 2010, Inorganic chemistry.

[169]  F. Armstrong,et al.  Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes , 2011, Proceedings of the National Academy of Sciences.

[170]  Marc T. M. Koper,et al.  Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis , 2011 .

[171]  J. Nørskov,et al.  Steady state oxygen reduction and cyclic voltammetry. , 2008, Faraday discussions.

[172]  H. Gasteiger,et al.  Just a Dream—or Future Reality? , 2009, Science.

[173]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[174]  Edward F. Holby,et al.  Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen , 2009 .

[175]  P. Strasser,et al.  Dealloyed Pt−Cu Core−Shell Nanoparticle Electrocatalysts for Use in PEM Fuel Cell Cathodes , 2008 .

[176]  A. Kirkland,et al.  Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. , 2007, Angewandte Chemie.

[177]  Ping Yu,et al.  PtCo/C cathode catalyst for improved durability in PEMFCs , 2005 .

[178]  S. Ball,et al.  Enhanced Stability of PtCo catalysts for PEMFC , 2006 .

[179]  Mark F. Mathias,et al.  Electrochemistry and the Future of the Automobile , 2010 .

[180]  C. Sánchez-Sánchez,et al.  Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. , 2010, Journal of the American Chemical Society.

[181]  D. Su,et al.  Structure and Activity of Novel Pt Core-Shell Catalysts for the Oxygen Reduction Reaction , 2009 .

[182]  Søren Dahl,et al.  The Brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts , 2001 .

[183]  E. Herrero,et al.  On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media , 2004 .

[184]  H. Hoster,et al.  Tuning adsorption via strain and vertical ligand effects. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[185]  J. Greeley Structural effects on trends in the deposition and dissolution of metal-supported metal adstructures , 2010 .

[186]  M. Mavrikakis,et al.  A Cu/Pt near-surface alloy for water-gas shift catalysis. , 2007, Journal of the American Chemical Society.

[187]  M. Arenz,et al.  IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports , 2011 .

[188]  S. Dvinskikh,et al.  Heteronuclear dipolar recoupling in solid-state nuclear magnetic resonance by amplitude-, phase-, and frequency-modulated Lee-Goldburg cross-polarization. , 2005, The Journal of chemical physics.

[189]  D. Nordlund,et al.  Structure and bonding of water on Pt(111). , 2002, Physical review letters.

[190]  Hubert A. Gasteiger,et al.  Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study , 2001 .