Geostatistical rock physics AVA inversion

Reservoir models are numerical representations of the subsurface petrophysical properties such as porosity, volume of minerals and fluid saturations. These are often derived from elastic models inferred from seismic inversion in a two-step approach: first, seismic reflection data are inverted for the elastic properties of interest (such as density, P-wave and S-wave velocities); these are then used as constraining properties to model the subsurface petrophysical variables. The sequential approach does not ensure a proper propagation of uncertainty throughout the entire geo-modelling workflow as it does not describe a direct link between the observed seismic data and the resulting petrophysical models. Rock physics models link the two domains. We propose to integrate seismic and rock physics modelling into an iterative geostatistical seismic inversion methodology. The proposed method allows the direct inference of the porosity, volume of shale and fluid saturations by simultaneously integrating well-logs, seismic reflection data and rock physics model predictions. Stochastic sequential simulation is used as the perturbation technique of the model parameter space, a calibrated facies-dependent rock physics model links the elastic and the petrophysical domains and a global optimizer based on cross-over genetic algorithms ensures the convergence of the methodology from iteration to iteration. The method is applied to a 3D volume extracted from a real reservoir dataset of a North Sea reservoir and compared to a geostatistical seismic AVA.

[1]  Guenther Schwedersky Neto,et al.  Integration of well data into geostatistical seismic amplitude variation with angle inversion for facies estimation , 2015 .

[2]  Martin Jullum,et al.  A Gaussian-based framework for local Bayesian inversion of geophysical data to rock properties , 2016 .

[3]  D. Grana,et al.  Bayesian Gaussian Mixture Linear Inversion for Geophysical Inverse Problems , 2017, Mathematical Geosciences.

[4]  H. Omre,et al.  Hierarchical Bayesian lithology/fluid prediction: A North Sea case study , 2012 .

[5]  Jessica Daecher,et al.  Gslib Geostatistical Software Library And Users Guide , 2016 .

[6]  Sams,et al.  Stochastic Inversion for High Resolution Reservoir Characterisation in the Central Sumatra Basin , 1999 .

[7]  Dario Grana,et al.  Statistical facies classification from multiple seismic attributes: comparison between Bayesian classification and expectation–maximization method and application in petrophysical inversion , 2017 .

[8]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[9]  J. Gunning,et al.  Joint Impedance and Facies Inversion – Seismic inversion redefined , 2014 .

[10]  Amilcar Soares,et al.  Direct Sequential Co-simulation with Joint Probability Distributions , 2010 .

[11]  Carla Carvajal,et al.  Petrophysical seismic inversion conditioned to well-log data: Methods and application to a gas reservoir , 2009 .

[12]  Tapan Mukerji,et al.  Quantitative Seismic Interpretation by Per Avseth , 2005 .

[13]  Amilcar Soares,et al.  Stochastic Inversion with a Global Perturbation Method , 2007 .

[14]  T. Mukerji,et al.  Sensitivity study of rock-physics parameters for modeling time-lapse seismic response of Norne field , 2013 .

[15]  D. Grana,et al.  Bayesian inversion of time-lapse seismic data for porosity , pressure and saturation changes , 2013 .

[16]  T. Salinas,et al.  Multiattribute rotation scheme: A tool for reservoir property prediction from seismic inversion attributes , 2015 .

[17]  M. Glinsky,et al.  Detection of reservoir quality using Bayesian seismic inversion , 2007 .

[18]  R. T. Shuey,et al.  A simplification of the Zoeppritz equations , 1985 .

[19]  Ran Bachrach,et al.  Joint estimation of porosity and saturation using stochastic rock-physics modeling , 2006 .

[20]  O. Dubrule,et al.  Geostatistical inversion - a sequential method of stochastic reservoir modelling constrained by seismic data , 1994 .

[21]  H. Omre,et al.  Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction , 2010 .

[22]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space , 1999 .

[23]  Tapan Mukerji,et al.  Stochastic inversion of facies from seismic data based on sequential simulations and probability perturbation method , 2012 .

[24]  K. Spikes,et al.  Probabilistic seismic inversion based on rock-physics models for reservoir characterization , 2007 .

[25]  A. Soares Direct Sequential Simulation and Cosimulation , 2001 .

[26]  J. Hamman,et al.  Petrophysical Seismic Inversion , 2005 .

[27]  T. Mukerji,et al.  The Rock Physics Handbook: Contents , 2009 .

[28]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[29]  Pedro Pereira,et al.  Geostatistical Seismic Inversion with Direct Sequential Simulation and Co-simulation with Multi-local Distribution Functions , 2017, Mathematical Geosciences.

[30]  Zhijing Wang,et al.  Seismic properties of pore fluids , 1992 .

[31]  Benoît Nœtinger,et al.  Optimization with the Gradual Deformation Method , 2002 .

[32]  T. Mukerji,et al.  Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review , 2010 .

[33]  Guenther Schwedersky Neto,et al.  Multidimensional scaling for the evaluation of a geostatistical seismic elastic inversion methodology , 2014 .

[34]  Tapan Mukerji,et al.  Bayesian inversion of time‐lapse seismic data for the estimation of static reservoir properties and dynamic property changes , 2015 .

[35]  T. Mukerji,et al.  The Rock Physics Handbook , 1998 .

[36]  A. Buland,et al.  Bayesian linearized AVO inversion , 2003 .

[37]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[38]  L. Azevedo,et al.  Geostatistical seismic Amplitude‐versus‐angle inversion , 2018 .

[39]  M. Bosch Lithologic tomography: From plural geophysical data to lithology estimation , 1999 .

[40]  D. Grana,et al.  Seismic Reflections of Rock Properties , 2014 .

[41]  T. Mukerji,et al.  Statistical rock physics: Combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization , 2001 .

[42]  Philippe Marie Doyen,et al.  Porosity from seismic data: A geostatistical approach , 1988 .

[43]  Tapan Mukerji,et al.  Quantitative Seismic Interpretation: References , 2005 .

[44]  Ernesto Della Rossa,et al.  Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion , 2010 .

[45]  Mrinal K. Sen,et al.  Nonlinear one-dimensional seismic waveform inversion using simulated annealing , 1991 .

[46]  A. B. Wood,et al.  A textbook of sound , 1930 .

[47]  Tapan Mukerji,et al.  Seismic inversion combining rock physics and multiple-point geostatistics , 2008 .

[48]  Andre G. Journel,et al.  Constraining Stochastic Images to Seismic Data , 1993 .