Computing continuous and piecewise affine Lyapunov functions for nonlinear systems

We present a numerical technique for the computation of a Lyapunov function for nonlinear systems with an asymptotically stable equilibrium point. The proposed approach constructs a partition of the state space, called a triangulation, and then computes values at the vertices of the triangulation using a Lyapunov function from a classical converse Lyapunov theorem due to Yoshizawa. A simple interpolation of the vertex values then yields a Continuous and Piecewise Affine (CPA) function. Verification that the obtained CPA function is a Lyapunov function is shown to be equivalent to verification of several simple inequalities. Numerical examples are presented demonstrating different aspects of the proposed method.

[1]  J. L. Massera On Liapounoff's Conditions of Stability , 1949 .

[2]  Taro Yoshizawa,et al.  On the stability of solutions of a system of differential equations , 1955 .

[3]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[4]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[5]  C. Hang,et al.  An algorithm for constructing Lyapunov functions based on the variable gradient method , 1970 .

[6]  N. Rouche,et al.  Stability Theory by Liapunov's Direct Method , 1977 .

[7]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[8]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[9]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[10]  Tor Arne Johansen,et al.  Computation of Lyapunov functions for smooth nonlinear systems using convex optimization , 2000, Autom..

[11]  A. Teel,et al.  A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .

[12]  A. Papachristodoulou,et al.  On the construction of Lyapunov functions using the sum of squares decomposition , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[13]  Sigurður F. Marinósson,et al.  Lyapunov function construction for ordinary differential equations with linear programming , 2002 .

[14]  Konstantin Mischaikow,et al.  An Algorithmic Approach to Chain Recurrence , 2005, Found. Comput. Math..

[15]  William D. Kalies,et al.  A computational approach to conley's decomposition theorem , 2006 .

[16]  P. Giesl Construction of Global Lyapunov Functions Using Radial Basis Functions , 2007 .

[17]  Peter Giesl,et al.  Existence of piecewise affine Lyapunov functions in two dimensions , 2010 .

[18]  Lars Grüne,et al.  Linear programming based Lyapunov function computation for differential inclusions , 2011 .

[19]  Antonis Papachristodoulou,et al.  A Converse Sum of Squares Lyapunov Result With a Degree Bound , 2012, IEEE Transactions on Automatic Control.

[20]  Peter Giesl,et al.  Construction of Lyapunov functions for nonlinear planar systems by linear programming , 2012 .

[21]  Peter Giesl,et al.  Existence of piecewise linear Lyapunov functions in arbitrary dimensions , 2012 .

[22]  Peter Giesl,et al.  Algorithmic verification of approximations to complete Lyapunov functions , 2014 .

[23]  Peter Giesl,et al.  Revised CPA method to compute Lyapunov functions for nonlinear systems , 2014 .

[24]  Peter Giesl,et al.  Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction , 2014, 53rd IEEE Conference on Decision and Control.

[25]  Christopher M. Kellett,et al.  A compendium of comparison function results , 2014, Math. Control. Signals Syst..

[26]  Sigurdur F. Hafstein,et al.  Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction , 2014, 2014 American Control Conference.

[27]  C. Kellett Classical Converse Theorems in Lyapunov's Second Method , 2015, 1502.04809.

[28]  P. Giesl,et al.  Review on computational methods for Lyapunov functions , 2015 .

[29]  Peter Giesl,et al.  Computation and Verification of Lyapunov Functions , 2015, SIAM J. Appl. Dyn. Syst..

[30]  Christopher M. Kellett,et al.  Computation of continuous and piecewise affine Lyapunov functions for discrete-time systems , 2015 .