Applications to cryptography of twisting commutative algebraic groups

We give an overview on twisting commutative algebraic groups and applications to discrete log-based cryptography. We explain how discrete log-based cryptography over extension fields can be reduced to cryptography in primitive subgroups. Primitive subgroups in turn are part of a general theory of tensor products of commutative algebraic groups and Galois modules (or twists of commutative algebraic groups), and this underlying mathematical theory can be used to shed light on discrete log-based cryptosystems. We give a number of concrete examples, to illustrate the definitions and results in an explicit way.

[1]  B. Mazur,et al.  Twisting Commutative Algebraic Groups , 2006, math/0609066.

[2]  Pierrick Gaudry,et al.  Index calculus for abelian varieties and the elliptic curve discrete logarithm problem , 2004, IACR Cryptol. ePrint Arch..

[3]  Valentin Evgenʹevich Voskresenskiĭ,et al.  Algebraic Groups and Their Birational Invariants , 1998 .

[4]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[5]  Alice Silverberg,et al.  Using Primitive Subgroups to Do More with Fewer Bits , 2004, ANTS.

[6]  Tanja Lange,et al.  Complex Multiplication , 2005, Handbook of Elliptic and Hyperelliptic Curve Cryptography.

[7]  Eric R. Verheul,et al.  Looking beyond XTR , 2002, ASIACRYPT.

[8]  Hugh C. Williams,et al.  Some Public Key Crypto-Functions as Intractable as Factorization , 1985, CRYPTO.

[9]  Alice Silverberg,et al.  Compression in Finite Fields and Torus-Based Cryptography , 2008, SIAM J. Comput..

[10]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[11]  A. Silverberg,et al.  COMPRESSION FOR TRACE ZERO SUBGROUPS OF ELLIPTIC CURVES , 2004 .

[12]  Frederik Vercauteren,et al.  The Number Field Sieve in the Medium Prime Case , 2006, CRYPTO.

[13]  Mark Stamp,et al.  Public Key Systems , 2007 .

[14]  Steven D. Galbraith,et al.  Discrete Logarithms in Generalized Jacobians , 2006, IACR Cryptol. ePrint Arch..

[15]  Andries E. Brouwer,et al.  Doing More with Fewer Bits , 1999, ASIACRYPT.

[16]  Tanja Lange,et al.  Trace zero subvarieties of genus 2 curves for cryptosystems , 2004 .

[17]  J. Milne On the arithmetic of abelian varieties , 1972 .

[18]  N. C. Alexander,et al.  Algebraic Tori in Cryptography , 2005 .

[19]  Guang Gong,et al.  Public-key cryptosystems based on cubic finite field extensions , 1999, IEEE Trans. Inf. Theory.

[20]  Antoine Joux,et al.  The Function Field Sieve in the Medium Prime Case , 2006, EUROCRYPT.

[21]  Claus Diem,et al.  A G ] 7 A ug 2 00 5 On the Structure of Weil Restrictions of Abelian Varieties , 2008 .

[22]  Alice Silverberg,et al.  Supersingular Abelian Varieties in Cryptology , 2002, CRYPTO.

[23]  Frederik Vercauteren,et al.  On the Discrete Logarithm Problem on Algebraic Tori , 2005, CRYPTO.

[24]  Alice Silverberg,et al.  Torus-Based Cryptography , 2003, CRYPTO.

[25]  G. Frey Applications of Arithmetical Geometry to Cryptographic Constructions , 2001 .

[26]  Steven D. Galbraith,et al.  Extending the GHS Weil Descent Attack , 2002, EUROCRYPT.

[27]  Peter J. Smith,et al.  LUC: A New Public Key System , 1993, SEC.

[28]  Isogeny Classes of Abelian Varieties with no Principal Polarizations , 2000, math/0002232.

[29]  H. C. Williams,et al.  A $p+1$ method of factoring , 1982 .

[30]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .

[31]  H. Darmon,et al.  Heegner Points and Rankin L-Series , 2004 .

[32]  Chris J. Skinner,et al.  A Public-Key Cryptosystem and a Digital Signature System BAsed on the Lucas Function Analogue to Discrete Logarithms , 1994, ASIACRYPT.

[33]  W. Stein Shafarevich-Tate Groups of Nonsquare Order , 2004 .

[34]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[35]  André Weil,et al.  Adeles and algebraic groups , 1982 .

[36]  Brian Conrad,et al.  Gross--Zagier Revisited , 2004 .

[37]  Arjen K. Lenstra,et al.  The XTR Public Key System , 2000, CRYPTO.

[38]  Nigel P. Smart,et al.  Constructive and destructive facets of Weil descent on elliptic curves , 2002, Journal of Cryptology.