High-Latitude Ionospheric Irregularity Drift Velocity Estimation Using Spaced GPS Receiver Carrier Phase Time–Frequency Analysis

The conventional spaced-receiver approach uses amplitude scintillations to estimate equatorial ionospheric irregularity drift velocities. This approach is less applicable at high latitudes where there is a lack of substantial amplitude scintillations. This paper presents a method to estimate ionosphere irregularity horizontal drift velocities based on GPS signal carrier phase measurements. Joint time-frequency analysis of the carrier phase measurements using an adaptive periodogram technique generates time-varying spectrograms of ionospheric irregularity-induced phase fluctuations. Cross correlation of the spectrograms between antenna pairs provides time lag information on propagating radio signals through the same ionospheric structure. The time lag information is combined with known positions of the receiver array, satellite orbits, and assumed irregularity altitude to infer ionospheric irregularity horizontal drift velocity. This paper presents the methodology and demonstrates its feasibility using data collected by a GPS receiver array at Gakona, Alaska. The potential error sources of this method are also analyzed.

[1]  Chong Wang,et al.  A New Regularized Adaptive Windowed Lomb Periodogram for Time–Frequency Analysis of Nonstationary Signals With Impulsive Components , 2012, IEEE Transactions on Instrumentation and Measurement.

[2]  C. Robusto The Cosine-Haversine Formula , 1957 .

[3]  Brent M. Ledvina,et al.  The ionosphere, radio navigation, and global navigation satellite systems , 2005 .

[4]  J. Aarons,et al.  Global morphology of ionospheric scintillations , 1971, Proceedings of the IEEE.

[5]  Amitava Chatterjee,et al.  A Postural Information-Based Biometric Authentication System Employing S-Transform, Radial Basis Function Network, and Extended Kalman Filtering , 2010, IEEE Transactions on Instrumentation and Measurement.

[6]  Leon Cohen,et al.  Uncertainty principles of the short-time Fourier transform , 1995, Optics & Photonics.

[7]  Keith M. Groves,et al.  Specification and forecasting of scintillations in communication/navigation links: current status and future plans , 2002 .

[8]  Yu Morton,et al.  GPS Interference Sources Angle of Arrival Estimation Using an Adaptive Periodogram Technique , 2007 .

[9]  Jun Wang SPECTRAL CHARACTERIZATION OF IONOSPHERE SCINTILLATION: ALGORITHMS AND APPLICATIONS , 2013 .

[10]  C. Valladares,et al.  A latitudinal network of GPS receivers dedicated to studies of equatorial spread F , 2004 .

[11]  Keith M. Groves,et al.  A Comparison of GPS Performance in a Scintillation Environment at Ascension Island , 2000 .

[12]  Jun Wang,et al.  Time-frequency analysis of ionosphere scintillations observed by a GNSS receiver array , 2012, Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium.

[13]  Theodore L. Beach,et al.  Perils of the GPS phase scintillation index (σϕ) , 2006 .

[14]  Jun Wang,et al.  GPS Carrier Phase Detrending Methods and Performances for Ionosphere Scintillation Studies , 2012 .

[15]  S. N. Mitra A radio method of measuring winds in the ionosphere , 1949 .

[16]  Per Enge,et al.  A Preliminary Study of the Effect of Ionospheric Scintillation on WAAS User Availability in Equatorial Regions , 1998 .

[17]  Yu Jiao High Latitude Ionospheric Scintillation Characterization , 2013 .

[18]  S. Basu,et al.  A comparison of satellite scintillation measurements with HF radar backscatter characteristics , 2005 .

[19]  Richard B. Langley,et al.  Improved amplitude- and phase-scintillation indices derived from wavelet detrended high-latitude GPS data , 2012, GPS Solutions.

[20]  R. Livingston,et al.  Interplanetary magnetic field control of drifts and anisotropy of high-latitude irregularities , 1991 .

[21]  Y. Morton,et al.  Ionosphere Scintillation Signal Parameters Modeling Based on Triple Frequency Software GNSS Receiver Measurements , 2012 .

[22]  B. Wilson,et al.  GPS and Ionosphere , 1999 .

[23]  J. Meriwether,et al.  Zonal irregularity drifts and neutral winds measured near the magnetic equator in Peru , 1991 .

[24]  Jose A. Antonino-Daviu,et al.  Diagnosis of Induction Motor Faults in the Fractional Fourier Domain , 2010, IEEE Transactions on Instrumentation and Measurement.

[25]  Paul M. Kintner,et al.  Global Positioning System measurements of the ionospheric zonal apparent velocity at Cachoeira Paulista in Brazil , 2000 .

[26]  X. Mao,et al.  GNSS Receiver Carrier Tracking Loop Impact on Ionosphere Scintillation Signal C/N0 and Carrier Phase Estimation , 2013 .

[27]  Yu Morton,et al.  A USRP2-based reconfigurable multi-constellation multi-frequency GNSS software receiver front end , 2012, GPS Solutions.

[28]  S. Franke,et al.  A new analysis technique for estimating zonal irregularity drifts and variability in the equatorial F region using spaced receiver scintillation data , 1987 .

[29]  G. J. Phillips,et al.  The Analysis of Observations on Spaced Receivers of the Fading of Radio Signals , 1950 .

[30]  Tadahiko Ogawa,et al.  Equatorial Ionospheric Scintillations and Zonal Irregularity Drifts Observed with Closely-Spaced GPS Receivers in Indonesia( CPEA-Coupling Processes in the Equatorial Atmosphere) , 2006 .

[31]  Yu Morton,et al.  An Improved Ionosphere Scintillation Event Detection and Automatic Trigger for GNSS Data Collection Systems , 2012 .

[32]  Jin Jiang,et al.  Time-frequency feature representation using energy concentration: An overview of recent advances , 2009, Digit. Signal Process..

[33]  A. Cruz Serra,et al.  PQ Monitoring System for Real-Time Detection and Classification of Disturbances in a Single-Phase Power System , 2008, IEEE Transactions on Instrumentation and Measurement.

[34]  Math Bollen,et al.  Time-frequency and time-scale domain analysis of voltage disturbances , 2000 .

[35]  Marcio Aquino,et al.  Implications of Ionospheric Scintillation for GNSS Users in Northern Europe , 2005, Journal of Navigation.

[36]  Brent M. Ledvina,et al.  Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations , 2004 .

[37]  D. Hampton,et al.  First Results of Phase Scintillation from a Longitudinal Chain of ASTRA’s SM-211 GPS TEC and Scintillation Receivers in Alaska , 2013 .

[38]  K. Yeh,et al.  Radio wave scintillations in the ionosphere , 1982 .

[39]  Yu Morton,et al.  Ionosphere Scintillation Receivers Performances Based on High Latitude Experiments , 2013 .

[40]  Taehwan Kim,et al.  Scintillation modeling for GPS‐Wide Area Augmentation System receivers , 2001 .

[41]  Yu Morton,et al.  Characterization of high‐latitude ionospheric scintillation of GPS signals , 2013 .

[42]  B. H. Briggs,et al.  On the analysis of moving patterns in geophysics—I. Correlation analysis , 1968 .

[43]  Todd E. Humphreys,et al.  Simulating Ionosphere-Induced Scintillation for Testing GPS Receiver Phase Tracking Loops , 2009, IEEE Journal of Selected Topics in Signal Processing.

[44]  Matthew Brenneman,et al.  Analysis of EEG Data Using an Adaptive Periodogram Technique , 2008, 2008 International Conference on BioMedical Engineering and Informatics.

[45]  Sandro M. Radicella,et al.  Problems in data treatment for ionospheric scintillation measurements , 2002 .

[46]  J. Klobuchar Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[47]  D. Anderson,et al.  Ionospheric conditions affecting the evolution of equatorial plasma depletions , 1983 .

[48]  S. Franke,et al.  Analysis and interpretation of spaced receiver scintillation data recorded at an equatorial station , 1988 .

[49]  Charles L. Rino,et al.  The Theory of Scintillation with Applications in Remote Sensing , 2011 .

[50]  Paul M. Kintner,et al.  Latitudinal variations of scintillation activity and zonal plasma drifts in South America , 2002 .

[51]  P. T. Jayachandran,et al.  Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions , 2011 .

[52]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[53]  John W. MacDougall,et al.  GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum , 2010 .

[54]  S. Basu Equatorial scintillations—a review , 1981 .

[55]  John A. Klobuchar,et al.  Ionospheric Scintillation Effects on GPS in the Equatorial and Auroral Regions , 2003 .

[56]  Tsunoda,et al.  High-latitude F-region irregularities: a review and synthesis. Technical report, 1 January 1986-1 July 1987 , 1988 .

[57]  B. Ledvina,et al.  Understanding spaced-receiver zonal velocity estimation , 2004 .

[58]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[59]  J. Aarons,et al.  Global positioning system phase fluctuations at auroral latitudes , 1997 .

[60]  Cesar E. Valladares,et al.  Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset , 1996 .

[61]  K. Yeh,et al.  Modeling of spaced‐receiver scintillation measurements , 1983 .

[62]  Charles S. Carrano,et al.  Satellite‐beacon Ionospheric‐scintillation Global Model of the upper Atmosphere (SIGMA) I: High‐latitude sensitivity study of the model parameters , 2014 .

[63]  Wu Chen,et al.  Equatorial ionospheric zonal drift by monitoring local GPS reference networks , 2011 .

[64]  S. Skone,et al.  Investigation of Scintillation Characteristics for High Latitude Phenomena , 2008 .