Cascadic multilevel algorithms for symmetric saddle point systems
暂无分享,去创建一个
[1] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[2] Ludmil T. Zikatanov,et al. Improving the Rate of Convergence of High-Order Finite Elements on Polyhedra I: A Priori Estimates , 2005 .
[3] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[4] Wolfgang Dahmen,et al. Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..
[5] D. Braess,et al. An efficient smoother for the Stokes problem , 1997 .
[6] Joseph E. Pasciak,et al. A new approximation technique for div-curl systems , 2003, Math. Comput..
[7] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[8] Constantin Bacuta,et al. A Unified Approach for Uzawa Algorithms , 2006, SIAM J. Numer. Anal..
[9] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[10] Peter Deuflhard,et al. Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..
[11] P. Deuflhard,et al. The cascadic multigrid method for elliptic problems , 1996 .
[12] C. Bacuta. Schur complements on Hilbert spaces and saddle point systems , 2009 .
[13] P. Vassilevski,et al. Multilevel iterative methods for mixed finite element discretizations of elliptic problems , 1992 .
[14] Lu Shu,et al. Multilevel Gradient Uzawa Algorithms for Symmetric Saddle Point Problems , 2013, J. Sci. Comput..
[15] Ricardo H. Nochetto,et al. An Adaptive Uzawa FEM for the Stokes Problem: Convergence without the Inf-Sup Condition , 2002, SIAM J. Numer. Anal..
[16] P. Monk,et al. Multilevel discretization of symmetric saddle point systems without the discrete LBB condition , 2012 .
[17] Long Chen,et al. Equidistribution and Optimal Approximation Class , 2013, Domain Decomposition Methods in Science and Engineering XX.
[18] James H. Bramble,et al. The analysis of multigrid methods , 2000 .
[19] Joseph E. Pasciak,et al. A least-squares approximation method for the time-harmonic Maxwell equations , 2005, J. Num. Math..
[20] Rob P. Stevenson,et al. An Optimal Adaptive Finite Element Method , 2004, SIAM J. Numer. Anal..
[21] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[22] Ludmil T. Zikatanov,et al. Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps , 2005, Numerische Mathematik.
[23] W. Desch,et al. A generalization of an inequality by N. V. Krylov , 2009 .
[24] R. Verfürth. A combined conjugate gradient - multi-grid algorithm for the numerical solution of the Stokes problem , 1984 .
[25] Ludmil T. Zikatanov,et al. Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.
[26] Panayot S. Vassilevski,et al. Wavelet-Like Methods in the Design of Efficient Multilevel Preconditioners for Elliptic PDEs , 1997 .
[27] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[28] Joseph E. Pasciak,et al. Uzawa type algorithms for nonsymmetric saddle point problems , 2000, Math. Comput..
[29] Hengguang Li,et al. ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED BOUNDARY VALUE PROBLEMS ON GENERAL POLYGONAL DOMAINS ∗ , 2010 .
[30] Panayot S. Vassilevski,et al. Computational scales of Sobolev norms with application to preconditioning , 2000, Math. Comput..
[31] Susanne C. Brenner,et al. Multigrid methods for the symmetric interior penalty method on graded meshes , 2009, Numer. Linear Algebra Appl..
[32] V. V. Shaidurov,et al. Some estimates of the rate of convergence for the cascadic conjugate-gradient method , 1996 .
[33] Apostol T. Vassilev,et al. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .
[34] Ludmil T. Zikatanov,et al. Commuting projections on graphs , 2014, Numer. Linear Algebra Appl..
[35] W. Rheinboldt,et al. On a generalization of an inequality of L. V. Kantorovich , 1959 .
[36] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[37] Joseph E. Pasciak,et al. Inexact Uzawa Algorithms for Symmetric and Nonsymmetric Saddle-Point Problems , 1997, LSSC.
[38] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[39] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[40] L. Demkowicz,et al. Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .
[41] Wolfgang Dahmen,et al. A cascadic multigrid algorithm for the Stokes equations , 1999, Numerische Mathematik.
[42] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..