Cascadic multilevel algorithms for symmetric saddle point systems

Abstract In this paper, we introduce a multilevel algorithm for approximating variational formulations of symmetric saddle point systems. The algorithm is based on availability of families of stable finite element pairs and on the availability of fast and accurate solvers for symmetric positive definite systems . On each fixed level an efficient solver such as the gradient or the conjugate gradient algorithm for inverting a Schur complement is implemented. The level change criterion follows the cascade principle and requires that the iteration error be close to the expected discretization error. We prove new estimates that relate the iteration error and the residual for the constraint equation. The new estimates are the key ingredients in imposing an efficient level change criterion. The first iteration on each new level uses information about the best approximation of the discrete solution from the previous level. The theoretical results and experiments show that the algorithms achieve optimal or close to optimal approximation rates by performing a non-increasing number of iterations on each level. Even though numerical results supporting the efficiency of the algorithms are presented for the Stokes system, the algorithms can be applied to a large class of boundary value problems, including first order systems that can be reformulated at the continuous level as symmetric saddle point problems, such as the Maxwell equations.

[1]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[2]  Ludmil T. Zikatanov,et al.  Improving the Rate of Convergence of High-Order Finite Elements on Polyhedra I: A Priori Estimates , 2005 .

[3]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[4]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..

[5]  D. Braess,et al.  An efficient smoother for the Stokes problem , 1997 .

[6]  Joseph E. Pasciak,et al.  A new approximation technique for div-curl systems , 2003, Math. Comput..

[7]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[8]  Constantin Bacuta,et al.  A Unified Approach for Uzawa Algorithms , 2006, SIAM J. Numer. Anal..

[9]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[10]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[11]  P. Deuflhard,et al.  The cascadic multigrid method for elliptic problems , 1996 .

[12]  C. Bacuta Schur complements on Hilbert spaces and saddle point systems , 2009 .

[13]  P. Vassilevski,et al.  Multilevel iterative methods for mixed finite element discretizations of elliptic problems , 1992 .

[14]  Lu Shu,et al.  Multilevel Gradient Uzawa Algorithms for Symmetric Saddle Point Problems , 2013, J. Sci. Comput..

[15]  Ricardo H. Nochetto,et al.  An Adaptive Uzawa FEM for the Stokes Problem: Convergence without the Inf-Sup Condition , 2002, SIAM J. Numer. Anal..

[16]  P. Monk,et al.  Multilevel discretization of symmetric saddle point systems without the discrete LBB condition , 2012 .

[17]  Long Chen,et al.  Equidistribution and Optimal Approximation Class , 2013, Domain Decomposition Methods in Science and Engineering XX.

[18]  James H. Bramble,et al.  The analysis of multigrid methods , 2000 .

[19]  Joseph E. Pasciak,et al.  A least-squares approximation method for the time-harmonic Maxwell equations , 2005, J. Num. Math..

[20]  Rob P. Stevenson,et al.  An Optimal Adaptive Finite Element Method , 2004, SIAM J. Numer. Anal..

[21]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[22]  Ludmil T. Zikatanov,et al.  Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps , 2005, Numerische Mathematik.

[23]  W. Desch,et al.  A generalization of an inequality by N. V. Krylov , 2009 .

[24]  R. Verfürth A combined conjugate gradient - multi-grid algorithm for the numerical solution of the Stokes problem , 1984 .

[25]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.

[26]  Panayot S. Vassilevski,et al.  Wavelet-Like Methods in the Design of Efficient Multilevel Preconditioners for Elliptic PDEs , 1997 .

[27]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[28]  Joseph E. Pasciak,et al.  Uzawa type algorithms for nonsymmetric saddle point problems , 2000, Math. Comput..

[29]  Hengguang Li,et al.  ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED BOUNDARY VALUE PROBLEMS ON GENERAL POLYGONAL DOMAINS ∗ , 2010 .

[30]  Panayot S. Vassilevski,et al.  Computational scales of Sobolev norms with application to preconditioning , 2000, Math. Comput..

[31]  Susanne C. Brenner,et al.  Multigrid methods for the symmetric interior penalty method on graded meshes , 2009, Numer. Linear Algebra Appl..

[32]  V. V. Shaidurov,et al.  Some estimates of the rate of convergence for the cascadic conjugate-gradient method , 1996 .

[33]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[34]  Ludmil T. Zikatanov,et al.  Commuting projections on graphs , 2014, Numer. Linear Algebra Appl..

[35]  W. Rheinboldt,et al.  On a generalization of an inequality of L. V. Kantorovich , 1959 .

[36]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[37]  Joseph E. Pasciak,et al.  Inexact Uzawa Algorithms for Symmetric and Nonsymmetric Saddle-Point Problems , 1997, LSSC.

[38]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[39]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[40]  L. Demkowicz,et al.  Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .

[41]  Wolfgang Dahmen,et al.  A cascadic multigrid algorithm for the Stokes equations , 1999, Numerische Mathematik.

[42]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..