An analogue of grad-div stabilization in nonconforming methods for incompressible flows

Grad-div stabilization is a classical remedy in conforming mixed finite element methods for incompressible flow problems, for mitigating velocity errors that are sometimes called poor mass conservation. Such errors arise due to the relaxation of the divergence constraint in classical mixed methods, and are excited whenever the spacial discretization has to deal with comparably large and complicated pressures. In this contribution, an analogue of grad-div stabilization is presented for nonconforming flow discretizations of Discontinuous Galerkin or nonconforming finite element type. Here the key is the penalization of the jumps of the normal velocities over facets of the triangulation, which controls the measure-valued part of the distributional divergence of the discrete velocity solution. Furthermore, we characterize the limit for arbitrarily large penalization parameters, which shows that the proposed nonconforming Discontinuous Galerkin methods remain robust and accurate in this limit. Several numerical examples illustrate the theory and show their relevance for the simulation of practical, nontrivial flows.

[1]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[2]  Leo G. Rebholz,et al.  A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[3]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[4]  Alexander Linke,et al.  Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier--Stokes equations , 2016 .

[5]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[6]  Dominique Pelletier,et al.  Are fem solutions of incompressible flows really incompressible? (or how simple flows can cause headaches!) , 1989 .

[7]  Philipp W. Schroeder,et al.  Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes , 2016, J. Comput. Phys..

[8]  P. Hansbo,et al.  Stabilized Crouzeix‐Raviart element for the Darcy‐Stokes problem , 2005 .

[9]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[10]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[11]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[12]  Alexander Linke,et al.  On velocity errors due to irrotational forces in the Navier-Stokes momentum balance , 2016, J. Comput. Phys..

[13]  Alexander Linke A divergence-free velocity reconstruction for incompressible flows , 2012 .

[14]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[15]  O. Dorok,et al.  Aspects of Finite Element Discretizations for Solving the Boussinesq Approximation of the Navier-Stokes Equations , 1994 .

[16]  Sander Rhebergen,et al.  Analysis of a Hybridized/Interface Stabilized Finite Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[17]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[18]  L. Tobiska,et al.  On spurious velocities in incompressible flow problems with interfaces , 2007 .

[19]  Marek Stastna,et al.  A post-processing technique for stabilizing the discontinuous pressure projection operator in marginally-resolved incompressible inviscid flow , 2015, ArXiv.

[20]  Colin J. Cotter,et al.  A finite element exterior calculus framework for the rotating shallow-water equations , 2012, J. Comput. Phys..

[21]  Martin Kronbichler,et al.  A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow , 2016, J. Comput. Phys..

[22]  Christoph Lehrenfeld,et al.  Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations , 2017, SeMA Journal.

[23]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[24]  Thirupathi Gudi,et al.  A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..

[25]  Leo G. Rebholz,et al.  On the convergence rate of grad-div stabilized Taylor–Hood to Scott–Vogelius solutions for incompressible flow problems , 2011 .

[26]  Guido Kanschat,et al.  A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..

[27]  C. Holm,et al.  Reducing spurious flow in simulations of electrokinetic phenomena. , 2016, The Journal of chemical physics.

[28]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[29]  Gert Lube,et al.  Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High Reynolds Number Vortex Dynamics , 2017, Journal of Scientific Computing.

[30]  M. Olshanskii,et al.  Stable finite‐element calculation of incompressible flows using the rotation form of convection , 2002 .

[31]  J. Schöberl C++11 Implementation of Finite Elements in NGSolve , 2014 .

[32]  Volker John,et al.  On the parameter choice in grad-div stabilization for the Stokes equations , 2014, Adv. Comput. Math..

[33]  Leo G. Rebholz,et al.  Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection , 2012 .

[34]  Christoph Lehrenfeld,et al.  High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows , 2015, ArXiv.

[35]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[36]  Colin J. Cotter,et al.  A Framework for Mimetic Discretization of the Rotating Shallow-Water Equations on Arbitrary Polygonal Grids , 2012, SIAM J. Sci. Comput..

[37]  Daniel Arndt,et al.  Local projection FEM stabilization for the time‐dependent incompressible Navier–Stokes problem , 2015 .

[38]  Rüdiger Verfürth,et al.  Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .

[39]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[40]  Alexander Linke,et al.  On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .

[41]  Jean-Frédéric Gerbeau,et al.  Spurious velocities in the steady flow of an incompressible fluid subjected to external forces , 1997 .

[42]  M. Olshanskii A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .

[43]  S. C. Brenner,et al.  Forty Years of the Crouzeix‐Raviart element , 2015 .

[44]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[45]  Gunar Matthies,et al.  Robust arbitrary order mixed finite element methods for the incompressible Stokes equations , 2014 .

[46]  P Frolkovi,et al.  Consistent Velocity Approximation for Density Driven Ow and Transport , 1998 .