SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3

We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009–2010, during the sixth LIGO science run and the second and third Virgo science runs. We perform two distinct searches: a modeled search for coalescences of either two neutron stars or a neutron star and black hole, and a search for generic, unmodeled gravitational-wave bursts. We find no evidence for gravitational-wave counterparts, either with any individual GRB in this sample or with the population as a whole. For all GRBs we place lower bounds on the distance to the progenitor, under the optimistic assumption of a gravitational-wave emission energy of 10−2 M☉ c2 at 150 Hz, with a median limit of 17 Mpc. For short–hard GRBs we place exclusion distances on binary neutron star and neutron-star–black-hole progenitors, using astrophysically motivated priors on the source parameters, with median values of 16 Mpc and 28 Mpc, respectively. These distance limits, while significantly larger than for a search that is not aided by GRB satellite observations, are not large enough to expect a coincidence with a GRB. However, projecting these exclusions to the sensitivities of Advanced LIGO and Virgo, which should begin operation in 2015, we find that the detection of gravitational waves associated with GRBs will become quite possible.

C. Broeck | S. Klimenko | V. Necula | S. Oh | P. Couvares | A. Wade | J. Worden | P. Graff | F. Feroz | J. Gair | S. Babak | N. Gehrels | J. Cannizzo | G. Prodi | S. Fairhurst | A. Heptonstall | S. Yoshida | P. Wessels | D. Kelley | W. Kells | A. Khalaidovski | F. Khalili | E. Khazanov | C. Kim | K. Kim | N. Kim | P. King | D. Kinzel | J. Kissel | K. Kokeyama | V. Kondrashov | W. Korth | I. Kowalska | D. Kozak | V. Kringel | B. Krishnan | G. Kuehn | M. Landry | B. Lantz | A. Lazzarini | P. Leaci | C. Lee | H. Lee | H. Lee | J. Leong | N. Leroy | N. Letendre | T. G. F. Li | N. Lockerbie | M. Lorenzini | V. Loriette | M. Lormand | G. Losurdo | J. Lough | A. Lundgren | B. Machenschalk | M. Macinnis | D. Macleod | M. Mageswaran | E. Majorana | I. Maksimovic | V. Malvezzi | N. Man | I. Mandel | V. Mandic | M. Mantovani | F. Marchesoni | F. Marion | A. Markosyan | E. Maros | F. Martelli | I. Martin | R. Martin | J. Marx | K. Mason | A. Masserot | F. Matichard | L. Matone | N. Mavalvala | G. Mazzolo | D. McClelland | S. McGuire | G. McIntyre | J. McIver | S. McWilliams | G. Meadors | A. Melatos | G. Mendell | R. Mercer | S. Meshkov | C. Messenger | H. Miao | L. Milano | J. Miller | Y. Minenkov | V. Mitrofanov | G. Mitselmakher | R. Mittleman | S. Mohapatra | D. Moraru | G. Moreno | S. Morriss | K. Mossavi | B. Mours | C. Mow-Lowry | C. Mueller | G. Mueller | S. Mukherjee | A. Mullavey | J. Munch | D. Murphy | P. Murray | A. Mytidis | L. Naticchioni | G. Newton | T. Nguyen | A. Nitz | F. Nocera | D. Nolting | M. Normandin | L. Nuttall | E. Ochsner | E. Oelker | G. Ogin | J. Oh | C. Ott | R. Ottens | H. Overmier | B. Owen | C. Palomba | C. Pankow | F. Paoletti | M. Papa | A. Pasqualetti | R. Passaquieti | D. Passuello | M. Pedraza | L. Pekowsky | S. Penn | A. Perreca | M. Phelps | M. Pichot | F. Piergiovanni | L. Pinard | I. Pinto | M. Pitkin | R. Poggiani | V. Predoi | T. Prestegard | L. Price | M. Prijatelj | M. Principe | S. Privitera | M. Punturo | P. Puppo | V. Quetschke | R. Quitzow-James | F. Raab | D. Rabeling | H. Radkins | P. Raffai | M. Rakhmanov | P. Rapagnani | V. Raymond | V. Re | T. Regimbau | S. Reid | F. Ricci | K. Riles | F. Robinet | A. Rocchi | L. Rolland | J. Rollins | R. Romano | J. Romie | S. Rowan | P. Ruggi | F. Salemi | L. Sammut | V. Sandberg | B. Sassolas | R. Savage | R. Schilling | R. Schnabel | R. Schofield | E. Schreiber | B. Schutz | J. Scott | S. Scott | D. Sellers | D. Sentenac | D. Shaddock | M. Shaltev | B. Shapiro | P. Shawhan | X. Siemens | D. Sigg | A. Singer | L. Singer | A. Sintes | J. Smith | R. Smith | B. Sorazu | J. Steinlechner | R. Stone | S. Strigin | R. Sturani | T. Summerscales | P. Sutton | B. Swinkels | M. Tacca | D. Talukder | D. Tanner | S. Tarabrin | R. Taylor | P. Thomas | K. Thorne | K. Thorne | E. Thrane | C. Tomlinson | M. Tonelli | C. Torres | F. Travasso | G. Traylor | D. Ugolini | H. Vahlbruch | G. Vajente | J. Brand | A. Veggel | S. Vass | R. Vaulin | B. Abbott | R. Biswas | The Ligo Scientific Collaboration | R. Abbott | T. Abbott | F. Acernese | C. Adams | R. Adhikari | C. Affeldt | M. Agathos | K. Agatsuma | P. Ajith | S. Anderson | W. Anderson | K. Arai | M. Araya | S. Aston | P. Astone | P. Aufmuth | P. Baker | G. Ballardin | S. Ballmer | J. Barayoga | D. Barker | F. Barone | B. Barr | L. Barsotti | M. Barsuglia | I. Bartos | R. Bassiri | A. Basti | M. Bejger | A. Bell | A. Bertolini | J. Betzwieser | I. Bilenko | G. Billingsley | J. Birch | M. Bitossi | J. Blackburn | D. Blair | F. Bondu | R. Bonnand | R. Bork | V. Boschi | C. Bradaschia | P. Brady | M. Branchesi | T. Briant | A. Brillet | M. Brinkmann | A. Brooks | T. Bulik | H. Bulten | A. Buonanno | D. Buskulic | C. Buy | R. Byer | L. Cadonati | E. Calloni | J. Camp | K. Cannon | J. Cao | F. Carbognani | S. Caride | S. Caudill | M. Cavaglià | R. Cavalieri | G. Cella | E. Cesarini | O. Chaibi | P. Charlton | É. Chassande-Mottin | X. Chen | Y. Chen | A. Chincarini | A. Chiummo | N. Christensen | S. Chua | S. Chung | G. Ciani | F. Clara | J. Clark | F. Cleva | E. Coccia | P. Cohadon | T. Corbitt | N. Cornish | A. Corsi | C. Costa | M. Coughlin | J. Coulon | D. Coward | M. Cowart | D. Coyne | J. Creighton | T. Creighton | A. Cumming | L. Cunningham | E. Cuoco | S. Danilishin | S. D’Antonio | K. Danzmann | V. Dattilo | E. Daw | D. DeBra | J. Degallaix | W. D. Pozzo | T. Dent | R. Rosa | R. DeSalvo | S. Dhurandhar | L. Fiore | A. Lieto | I. Palma | F. Donovan | K. Dooley | M. Drago | J. Driggers | Z. Du | S. Dwyer | M. Edwards | A. Effler | P. Ehrens | T. Etzel | M. Evans | V. Fafone | B. Farr | I. Ferrante | F. Fidecaro | I. Fiori | R. Fisher | R. Flaminio | J. Fournier | S. Frasca | F. Frasconi | Z. Frei | A. Freise | R. Frey | P. Fritschel | V. Frolov | P. Fulda | M. Fyffe | L. Gammaitoni | F. Garufi | G. Gemme | E. Génin | A. Gennai | L. Gergely | S. Ghosh | J. Giaime | A. Giazotto | E. Goetz | R. Gouaty | C. Graef | M. Granata | A. Grant | S. Gras | C. Gray | H. Grote | S. Grunewald | G. Guidi | E. Gustafson | R. Gustafson | G. Hammond | J. Hanks | C. Hanna | J. Hanson | J. Harms | G. Harry | I. Harry | K. Haughian | A. Heidmann | M. Heintze | H. Heitmann | M. Hendry | I. Heng | S. Hild | D. Hoak | K. Holt | J. Hough | E. Howell | B. Hughey | S. Husa | S. Huttner | T. Huynh--Dinh | R. Inta | K. Izumi | P. Jaranowski | D. Jones | R. Jones | R. Jonker | L. Ju | S. Kandhasamy | G. Kang | J. Kanner | W. Katzman | K. Kawabe | R. Kumar | J. Li | H. Luck | M. Mehmet | C. Michel | B. O'reilly | R. O’Shaughnessy | D. Ottaway | L. Prokhorov | O. Puncken | A. Rudiger | K. Ryan | P. Saulson | D. Shoemaker | B. Slagmolen | K. Strain | A. Vecchio | G. Vedovato | J. Veitch | P. Veitch | D. Verkindt | F. Vetrano | J. Vinet | S. Vitale | H. Vocca | C. Vorvick | S. Vyatchanin | L. Wade | M. Wade | L. Wallace | R. Ward | M. Was | M. Weinert | A. Weinstein | R. Weiss | L. Wen | K. Wette | J. Whelan | B. Whiting | B. Willke | W. Winkler | C. Wipf | H. Wittel | G. Woan | H. Yamamoto | C. Yancey | M. Yvert | M. Zanolin | J. Zendri | L. Zhang | C. Zhao | M. Zucker | J. Zweizig | L. Finn | S. M'arka | M. Bizouard | S. Bose | V. Brisson | F. Cavalier | M. Davier | M. D'iaz | G. Gonz'alez | P. Hello | V. Kalogera | A. Kr'olak | Z. M'arka | D. Rosi'nska | B. Sathyaprakash | A. Stuver | A. Vicer'e | A. Zadro.zny | M. Abernathy | B. Allen | D. Amariutei | C. Aulbert | J. Batch | B. Behnke | O. Bock | T. Bodiya | C. Bogan | V. Braginsky | D. Brown | C. Capano | C. Cepeda | T. Chalermsongsak | J. Chow | A. Colla | A. Conte | D. Cook | H. Daveloza | R. Day | G. Debreczeni | V. Dergachev | R. Derosa | R. Drever | M. Factourovich | H. Fehrmann | S. Franco | T. Fricke | K. Giardina | M. Hartman | K. Hodge | D. Hosken | D. Ingram | T. Isogai | W. Johnson | E. Katsavounidis | F. Kawazoe | M. Mohan | J. O'Dell | K. Tokmakov | C. Torrie | M. Wang | X. Wang | T. Westphal | D. White | F. Zhang | R. Prix | J. Romano | S. Steinlechner | S. Whitcomb | R. Matzner | C. Osthelder | R. Kasturi | R. Paoletti | P. Lam | C. Reed | D. Reitze | M. Barton | A. Virgilio | M. Fujimoto | K. Hayama | S. Kawamura | H. Kim | O. Miyakawa | S. Sato | K. Somiya | K. Yamamoto | M. Lubinski | L. Blackburn | S. Foley | T. Eberle | D. Feldbaum | J. Gleason | S. Gossler | R. Greenhalgh | A. Gretarsson | C. Guido | M. Hewitson | M. Jacobson | H. Kaufer | D. Keppel | T. Bauer | M. Blom | L. Bonelli | L. Bosi | B. Canuel | M. Colombini | J. Marque | N. Morgado | I. Neri | I. R'acz | J. Colas | F. Seifert | A. Rau | T. Mori | M. Edgar | J. Brau | M. Emilio | G. Persichetti | L. Carbone | R. Cutler | J. Heefner | D. Lodhia | A. Wiseman | J. Garcia | A. Toncelli | S. Braccini | T. Nash | S. Koranda | D. Atkinson | D. Hammer | H. Pletsch | K. Hurley | A. Wanner | A. Kienlin | V. Sannibale | W. Zhang | M. Prato | B. Schulz | E. Robinson | A. Ivanov | A. Marandi | C. Veltkamp | M. Flanigan | P. Kwee | M. Frede | L. Winkelmann | G. Santostasi | E. Tournefier | D. Clark | V. Connaughton | J. Franc | P. Willems | S. Krishnamurthy | C. Rover | E. Ceron | B. Aylott | J. Bauchrowitz | J. Berliner | N. Beveridge | P. Beyersdorf | E. Black | B. Bland | M. Born | J. Breyer | M. Britzger | J. Burguet-Castell | P. Campsie | M. Cordier | K. Dahl | B. Daudert | T. Dayanga | A. Dietz | J. Dumas | R. Engel | K. Evans | T. Evans | D. Fazi | E. Forsi | N. Fotopoulos | M. Frei | D. Friedrich | S. Giampanis | S. Gil-Casanova | C. Gill | M. Holtrop | T. Hong | S. Hooper | E. James | Y. Jang | E. Jesse | P. Kalmus | B. Kim | C. Lawrie | Z. Liu | E. Macdonald | K. Mailand | T. Meier | B. Moe | A. Nishizawa | M. Pickenpack | F. Postiglione | T. Reed | R. Riesen | N. Robertson | S. Roddy | C. Rodriguez | M. Rodruck | I. Santiago-Prieto | P. Schwinberg | G. Skelton | J. Slutsky | N. Smith-Lefebvre | M. Stefszky | E. Steinert | S. Steplewski | A. Stochino | A. Stroeer | S. Susmithan | M. West | C. Wilkinson | L. Williams | R. Williams | R. Wooley | I. Yakushin | D. Yeaton-Massey | N. Zotov | L. Stein | F. Speirits | J. R. Taylor | J. Luan | S. Mohanty | G. Jones | A. Melissinos | R. Bondarescu | A. Sergeev | R. Grosso | R. Conte | S. Chelkowski | M. Sung | I. Belopolski | A. Cruise | D. Bridges | A. Hardt | M. Arain | M. Bastarrika | L. Goggin | I. Leonor | P. Lindquist | D. McKechan | J. Nelson | P. Patel | C. Robinson | A. Sibley | A. Villar | M. Benacquista | J. Clayton | R. Dannenberg | Y. Fan | R. Geng | N. Gray | T. Ha | J. Hallam | V. Herrera | Z. Keresztes | Y. M. Kim | N. Lastzka | M. Meyer | A. Page | P. Peiris | M. Plissi | B. Rankins | K. Redwine | P. Sainathan | J. Soto | A. Stein | K. Tseng | S. Waldman | Y. Wan | P. Yu | L. Taffarello | M. Prete | C. Greverie | A. Morgia | S. Mosca | S. V. D. Putten | L. Santamar'ia | Y. Liu | M. Parisi | Z. Wang | L. Sperandio | Virgo Collaboration J. Abadie | M. Galimberti | G. Endrőczi | W. Chen | B. Bouhou | O. Kranz | M. E. G'asp'ar | C. Colacino | M. Pietka | M. Vavoulidis | T. Accadia | M. Beker | M. Gorodetsky | J. Hayau | N. Liguori | L. Palladino | D. Beck | A. Thuring | L. Forte | E. Harstad | H. Muller-Ebhardt | P. Jenke | H. Yang | O. Torre | M. Bebronne | A. Braack | R. McCarthy | M. Vasúth | E. Tucker | R. Gupta | M. Briggs | C. Chung | J. Pold | H. Cho | M. Smith | T. Li | Y. Pan | P. Kumar | X. Zhang | D. Brown | S. Ghosh | C. Zhao | C. Zhao | M. Smith | Takashi Mori

[1]  A. Kottas,et al.  THE NEUTRON STAR MASS DISTRIBUTION , 2010, 1011.4291.

[2]  M. Peter GRB AFTERGLOW PLATEAUS AND GRAVITATIONAL W AVES: M ULTI-M ESSENGER SIGNATURE OF A M ILLISECOND M AGNETAR? , 2013 .

[3]  G. Letawe,et al.  THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. III. REDSHIFT DISTRIBUTION , 2012, 1205.3490.

[4]  M. Loupias,et al.  Virgo: a laser interferometer to detect gravitational waves , 2012 .

[5]  K. S. Thorne,et al.  The characterization of Virgo data and its impact on gravitational-wave searches , 2012, 1203.5613.

[6]  K. S. Thorne,et al.  All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run , 2012, 1202.2788.

[7]  P. Sutton,et al.  Performance of an externally triggered gravitational-wave burst search , 2012, 1201.5599.

[8]  K. S. Thorne,et al.  Implications For The Origin Of GRB 051103 From LIGO Observations , 2012, 1201.4413.

[9]  A. J. van der Horst,et al.  THE FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST TWO YEARS , 2012, 1201.3099.

[10]  Dimitrios Psaltis,et al.  ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS , 2012, 1201.1006.

[11]  C. Broeck,et al.  Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3 , 2011, 1111.7314.

[12]  Masaru Shibata,et al.  Extracting equation of state parameters from black hole-neutron star mergers: aligned-spin black holes and a preliminary waveform model , 2011, 1109.3402.

[13]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[14]  N. Gehrels,et al.  Gamma-Ray Bursts , 2016, Stars and Stellar Processes.

[15]  V. Predoi,et al.  Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts , 2011, 1112.1637.

[16]  Masaru Shibata,et al.  Coalescence of Black Hole-Neutron Star Binaries , 2011, Living reviews in relativity.

[17]  S. Woosley Models for Gamma-Ray Burst Progenitors and Central Engines , 2011, 1105.4193.

[18]  Joshua S. Bloom,et al.  The Gamma-Ray Burst - Supernova Connection , 2011, 1104.2274.

[19]  F. Aharonian,et al.  ASTROPHYSICAL PARAMETERS OF LS 2883 AND IMPLICATIONS FOR THE PSR B1259–63 GAMMA-RAY BINARY , 2011, 1103.4636.

[20]  F. Ohme,et al.  Will black hole-neutron star binary inspirals tell us about the neutron star equation of state? , 2011, 1103.3526.

[21]  Miguel A. Aloy,et al.  THE MISSING LINK: MERGING NEUTRON STARS NATURALLY PRODUCE JET-LIKE STRUCTURES AND CAN POWER SHORT GAMMA-RAY BURSTS , 2011, 1101.4298.

[22]  S. Fairhurst,et al.  Targeted coherent search for gravitational waves from compact binary coalescences , 2010, 1012.4939.

[23]  Lawrence E. Kidder,et al.  Black hole-neutron star mergers: Effects of the orientation of the black hole spin , 2010, 1007.4203.

[24]  A. Dietz Estimation of compact binary coalescense rates from short gamma-ray burst redshift measurements , 2010, 1011.2059.

[25]  V. Moscatelli,et al.  Calibration and sensitivity of the Virgo detector during its second science run , 2010, 1009.5190.

[26]  G. E. Romero,et al.  Gravitational radiation from precessing accretion disks in gamma-ray bursts , 2010, 1009.3679.

[27]  He Gao,et al.  A NEW CLASS OF GAMMA-RAY BURSTS FROM STELLAR DISRUPTIONS BY INTERMEDIATE-MASS BLACK HOLES , 2010 .

[28]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[29]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[30]  Z. Bagoly,et al.  DETAILED CLASSIFICATION OF SWIFT 'S GAMMA-RAY BURSTS , 2010, 1003.0632.

[31]  T. Hayler,et al.  SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN , 2010, 1001.0165.

[32]  F. Pannarale,et al.  Neutron star tidal disruption in mixed binaries: The imprint of the equation of state , 2009, 0912.3692.

[33]  B. Lackey,et al.  Tidal deformability of neutron stars with realistic equations of state , 2009, 0911.3535.

[34]  Samaya Nissanke,et al.  EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS , 2009, 0904.1017.

[35]  M. Duez,et al.  Numerical relativity confronts compact neutron star binaries: a review and status report , 2009, 0912.3529.

[36]  Richard O'Shaughnessy,et al.  Compact binary coalescences in the band of ground-based gravitational-wave detectors , 2009, 0912.1074.

[37]  Z. Marka,et al.  Estimating detection rates for the LIGO–Virgo search for gravitational-wave burst counterparts to gamma-ray bursts using inferred local GRB rates , 2009 .

[38]  J. K. Blackburn,et al.  SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1 , 2009, 0908.3824.

[39]  Stephen Poprocki,et al.  X-Pipeline: an analysis package for autonomous gravitational-wave burst searches , 2009, 0908.3665.

[40]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[41]  J. Greiner,et al.  Time resolved spectral behavior of bright BATSE precursors , 2009, 0907.5203.

[42]  A. Corsi,et al.  GAMMA-RAY BURST AFTERGLOW PLATEAUS AND GRAVITATIONAL WAVES: MULTI-MESSENGER SIGNATURE OF A MILLISECOND MAGNETAR? , 2009, 0907.2290.

[43]  E. Mazets,et al.  The status and future of the third interplanetary network , 2009 .

[44]  Naoki Isobe,et al.  The MAXI Mission on the ISS: Science and Instruments for Monitoring All-Sky X-Ray Images , 2009, 0906.0631.

[45]  Neil Gehrels,et al.  GAMMA-RAY BURST: Sixth Huntsville Symposium , 2009 .

[46]  Davide Lazzati,et al.  VERY HIGH EFFICIENCY PHOTOSPHERIC EMISSION IN LONG-DURATION γ-RAY BURSTS , 2009, 0904.2779.

[47]  Bing Zhang,et al.  DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF z = 6.7 GRB 080913, z = 8.2 GRB 090423, AND SOME SHORT/HARD GRBs , 2009, 0902.2419.

[48]  Masaru Shibata,et al.  Measuring the neutron star equation of state with gravitational wave observations , 2009, 0901.3258.

[49]  et al,et al.  Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of Ligo's S5 Data , 2022 .

[50]  S. Fairhurst,et al.  The loudest event statistic: general formulation, properties and applications , 2007, 0710.0465.

[51]  J. Atteia,et al.  Gamma-Ray Bursts , 2009 .

[52]  T. Sakamoto,et al.  JET BREAKS AND ENERGETICS OF Swift GAMMA-RAY BURST X-RAY AFTERGLOWS , 2008, 0812.4780.

[53]  G. Russo,et al.  Search for gravitational waves associated with GRB 050915a using the Virgo detector , 2008, 0803.0376.

[54]  Christian D. Ott,et al.  The gravitational-wave signature of core-collapse supernovae , 2008, 0809.0695.

[55]  M. Nardini,et al.  Precursors in Swift Gamma Ray Bursts with Redshift , 2008, 0806.3076.

[56]  C. Broeck,et al.  BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR , 2008, 0805.4758.

[57]  M. M. Casey,et al.  Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs , 2008 .

[58]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[59]  S. Barthelmy GCN and VOEvent - A Status Report , 2008 .

[60]  Bing Zhang,et al.  Low-luminosity gamma-ray bursts as a distinct GRB population: a firmer case from multiple criteria constraints , 2008, 0801.4751.

[61]  Z. Etienne,et al.  Fully General Relativistic Simulations of Black Hole-Neutron Star Mergers , 2007, 0712.2460.

[62]  K. Hurley,et al.  A Giant Flare from a Soft Gamma Repeater in the Andromeda Galaxy (M31) , 2007, 0712.1502.

[63]  M. Shibata,et al.  Merger of black hole and neutron star in general relativity: Tidal disruption, torus mass, and gravitational waves , 2007, 0711.1410.

[64]  T. Hinderer,et al.  Constraining neutron-star tidal Love numbers with gravitational-wave detectors , 2007, 0709.1915.

[65]  M. V. van der Sluys,et al.  Black Hole Spin Evolution: Implications for Short-Hard Gamma-Ray Bursts and Gravitational Wave Detection , 2007, astro-ph/0703131.

[66]  Joshua R. Smith,et al.  Implications for the origin of GRB 070201 from LIGO observations , 2007 .

[67]  Vincent Loriette,et al.  Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a , 2007, Classical and Quantum Gravity.

[68]  M. Feroci,et al.  SuperAGILE: The hard X-ray imager for the AGILE space mission , 2007, 0708.0123.

[69]  T. Cokelaer Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals , 2007, 0706.4437.

[70]  J. Fynbo,et al.  No supernovae detected in two long-duration gamma-ray bursts , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  Astrophysics,et al.  Mergers of Black Hole-Neutron Star Binaries. I. Methods and First Results , 2007, astro-ph/0703599.

[72]  P. Mészáros,et al.  GRB Precursors in the Fallback Collapsar Scenario , 2007, astro-ph/0702441.

[73]  E. Nakar Short-hard gamma-ray bursts , 2007, astro-ph/0701748.

[74]  N. Gehrels,et al.  Making a Short Gamma-Ray Burst from a Long One: Implications for the Nature of GRB 060614 , 2006, astro-ph/0612238.

[75]  A. Piro,et al.  Fragmentation of Collapsar Disks and the Production of Gravitational Waves , 2006, astro-ph/0610696.

[76]  Charles D. Dermer,et al.  On the Redshift Distribution of Gamma-Ray Bursts in the Swift Era , 2006, astro-ph/0610043.

[77]  E. Mazets,et al.  On the possibility of identifying the short hard burst GRB 051103 with a giant flare from a soft gamma repeater in the M81 group of galaxies , 2006, astro-ph/0609544.

[78]  Bing Zhang,et al.  Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor , 2006, astro-ph/0605200.

[79]  S. Rosswog Last Moments in the Life of a Compact Binary System: Gravitational Waves, Gamma-Ray Bursts and Magnetar Formation , 2006, astro-ph/0612572.

[80]  Derek B. Fox,et al.  The Local Rate and the Progenitor Lifetimes of Short-Hard Gamma-Ray Bursts: Synthesis and Predictions for the Laser Interferometer Gravitational-Wave Observatory , 2006 .

[81]  C. Ott,et al.  A new mechanism for gravitational-wave emission in core-collapse supernovae. , 2006, Physical review letters.

[82]  P. B. Cameron,et al.  Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.

[83]  N. Gehrels,et al.  Jet Breaks in Short Gamma-Ray Bursts. II. The Collimated Afterglow of GRB 051221A , 2006, astro-ph/0604320.

[84]  D. Frail,et al.  Radio and Optical Follow-up Observations of a Uniform Radio Transient Search: Implications for Gamma-Ray Bursts and Supernovae , 2006 .

[85]  S. Ransom,et al.  A Radio Pulsar Spinning at 716 Hz , 2006, Science.

[86]  D. Holz,et al.  Short GRB and binary black hole standard sirens as a probe of dark energy , 2006, astro-ph/0601275.

[87]  J. Norris,et al.  Short Gamma-Ray Bursts with Extended Emission , 2006, astro-ph/0601190.

[88]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2005, Living reviews in relativity.

[89]  D. Fox,et al.  The Local Rate and the Progenitor Lifetimes of Short-Hard Gamma-Ray Bursts: Synthesis and Predictions for LIGO , 2005, astro-ph/0511254.

[90]  M. M. Kasliwal,et al.  The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts , 2005, Nature.

[91]  A. Levan,et al.  An origin in the local Universe for some short γ-ray bursts , 2005, Nature.

[92]  D. Frail,et al.  A Complete Survey of the Transient Radio Sky and Implications for Gamma-Ray Bursts, Supernovae, and other Relativistic Explosions , 2005, astro-ph/0508629.

[93]  Bernard F. Schutz,et al.  Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors , 2005 .

[94]  D. Frail,et al.  Afterglows, Redshifts, and Properties of Swift Gamma-Ray Bursts , 2005, astro-ph/0505107.

[95]  T. Sakamoto,et al.  A giant γ-ray flare from the magnetar SGR 1806–20 , 2005, Nature.

[96]  D. Lazzati Precursor activity in bright, long BATSE gamma-ray bursts , 2004, astro-ph/0411753.

[97]  T. Piran,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The Luminosity and Redshift Distributions of Short-Duration , 2004 .

[98]  B. Allen χ2 time-frequency discriminator for gravitational wave detection , 2004, gr-qc/0405045.

[99]  T. Damour,et al.  Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. , 2004, Physical review letters.

[100]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[101]  P. Brady,et al.  Upper limits on gravitational-wave signals based on loudest events , 2004, gr-qc/0405044.

[102]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[103]  T. Abbott,et al.  Detector description and performance for the first coincidence observations between LIGO and GEO , 2003, gr-qc/0308043.

[104]  M. Shibata,et al.  Dynamical bar‐mode instability of differentially rotating stars: effects of equations of state and velocity profiles , 2003, astro-ph/0304298.

[105]  P. Mészáros,et al.  Polarized Gravitational Waves from Gamma-Ray Bursts , 2002, astro-ph/0212539.

[106]  P. Mészáros,et al.  Gravitational Radiation from Gamma-Ray Burst Progenitors , 2002, astro-ph/0210211.

[107]  Caltech,et al.  Relativistic Jets in Collapsars , 2002, astro-ph/0207436.

[108]  Arvind N. Parmar,et al.  The INTEGRAL mission , 1995, SPIE Astronomical Telescopes + Instrumentation.

[109]  Chris L. Fryer,et al.  Gravitational Wave Emission from Core Collapse of Massive Stars , 2001, astro-ph/0106113.

[110]  S. E. Woosley,et al.  Supernovae, Jets, and Collapsars , 1999, astro-ph/9910034.

[111]  M. Vallisneri Prospects for gravitational-wave observations of neutron-star tidal disruption in neutron-star-black-hole binaries. , 1999, Physical review letters.

[112]  D. Frail,et al.  Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998 , 1998, Nature.

[113]  P. Vreeswijk,et al.  A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998 , 1998, Nature.

[114]  Bernard F. Schutz,et al.  Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .

[115]  C. Kouveliotou,et al.  Gamma-ray burst precursor activity as observed with BATSE , 1995 .

[116]  C. Will,et al.  Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian waveforms. , 1995, Physical review. D, Particles and fields.

[117]  Blanchet,et al.  Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.

[118]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[119]  Marković Possibility of determining cosmological parameters from measurements of gravitational waves emitted by coalescing, compact binaries. , 1993, Physical review. D, Particles and fields.

[120]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[121]  T. Piran,et al.  Gravitational Waves and gamma -Ray Bursts , 1993, astro-ph/9305015.

[122]  L. Finn,et al.  Gravitational radiation, inspiraling binaries, and cosmology , 1993, gr-qc/9304020.

[123]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[124]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[125]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[126]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[127]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[128]  Werner Israel,et al.  Three Hundred Years of Gravitation , 1987 .

[129]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.