A note on global stability of the virose equilibrium for network-based computer viruses epidemics

[1]  Jinde Cao,et al.  Global stability of an epidemic model with carrier state in heterogeneous networks , 2015 .

[2]  Jinde Cao,et al.  Global dynamics of a network epidemic model for waterborne diseases spread , 2014, Appl. Math. Comput..

[3]  Zhen Jin,et al.  Epidemic dynamics on semi-directed complex networks. , 2013, Mathematical biosciences.

[4]  Attila Szolnoki,et al.  Correlation of positive and negative reciprocity fails to confer an evolutionary advantage: Phase transitions to elementary strategies , 2013, ArXiv.

[5]  Jinde Cao,et al.  Impact of media coverage on epidemic spreading in complex networks , 2013, Physica A: Statistical Mechanics and its Applications.

[6]  Matjaz Perc,et al.  Collective behavior and evolutionary games - An introduction , 2013, 1306.2296.

[7]  Romualdo Pastor-Satorras,et al.  Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks. , 2013, Physical review letters.

[8]  Chenquan Gan,et al.  Epidemics of computer viruses: A complex-network approach , 2013, Appl. Math. Comput..

[9]  Zhen Jin,et al.  Analysis of sexually transmitted disease spreading in heterosexual and homosexual populations. , 2013, Mathematical biosciences.

[10]  Attila Szolnoki,et al.  Evolutionary dynamics of group interactions on structured populations: a review , 2013, Journal of The Royal Society Interface.

[11]  Guanrong Chen,et al.  Spreading dynamics and global stability of a generalized epidemic model on complex heterogeneous networks , 2012 .

[12]  Zhen Jin,et al.  Epidemic spreading on complex networks with community structure , 2012, Appl. Math. Comput..

[13]  Qi Han,et al.  Hopf bifurcation analysis of a delayed viral infection model in computer networks , 2012, Math. Comput. Model..

[14]  G. Szabó,et al.  Defense mechanisms of empathetic players in the spatial ultimatum game. , 2012, Physical review letters.

[15]  Guanrong Chen,et al.  Global attractivity of a network-based epidemic SIS model with nonlinear infectivity , 2012 .

[16]  Seong-Moo Yoo,et al.  Stability analysis of VEISV propagation modeling for network worm attack , 2012 .

[17]  Yi Wang,et al.  Global analysis of an SIS model with an infective vector on complex networks , 2012 .

[18]  Lu-Xing Yang,et al.  A novel computer virus model and its dynamics , 2012 .

[19]  Bimal Kumar Mishra,et al.  Dynamic model of worms with vertical transmission in computer network , 2011, Appl. Math. Comput..

[20]  Zhen Jin,et al.  The analysis of an epidemic model on networks , 2011, Appl. Math. Comput..

[21]  Fuzhong Nian,et al.  Efficient immunization strategies on complex networks. , 2010, Journal of theoretical biology.

[22]  Jie Lou,et al.  The dynamics of spreading and immune strategies of sexually transmitted diseases on scale-free network , 2010 .

[23]  C. Connell McCluskey,et al.  Complete global stability for an SIR epidemic model with delay — Distributed or discrete , 2010 .

[24]  Attila Rákos,et al.  Epidemic spreading in evolving networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Attila Szolnoki,et al.  Coevolutionary Games - A Mini Review , 2009, Biosyst..

[26]  Michael Y. Li,et al.  Global-stability problem for coupled systems of differential equations on networks , 2010 .

[27]  Alberto d’Onofrio,et al.  A note on the global behaviour of the network-based SIS epidemic model , 2008 .

[28]  Lin Wang,et al.  Global Stability of Virus Spreading in Complex Heterogeneous Networks , 2008, SIAM J. Appl. Math..

[29]  M. Small,et al.  Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Carlo Piccardi,et al.  Inefficient epidemic spreading in scale-free networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Xin-Jian Xu,et al.  Impacts of preference and geography on epidemic spreading. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Alexei Vazquez,et al.  Epidemic outbreaks on structured populations. , 2006, Journal of theoretical biology.

[33]  Guanrong Chen,et al.  Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Thilo Gross,et al.  Epidemic dynamics on an adaptive network. , 2005, Physical review letters.

[35]  Zhen Jin,et al.  GLOBAL STABILITY OF A SEIR EPIDEMIC MODEL WITH INFECTIOUS FORCE IN LATENT, INFECTED AND IMMUNE PERIOD , 2005 .

[36]  Zhen Jin,et al.  Global stability of an SEI epidemic model with general contact rate , 2005 .

[37]  Alessandro Vespignani,et al.  Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. , 2004, Journal of theoretical biology.

[38]  Jinshan Wu,et al.  The spread of infectious disease on complex networks with household-structure , 2004 .

[39]  Jin Zhen,et al.  Global stability of an SEI epidemic model , 2004 .

[40]  Yukio Hayashi,et al.  Oscillatory epidemic prevalence in growing scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  A. F. Pacheco,et al.  Epidemic incidence in correlated complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Reuven Cohen,et al.  Efficient immunization strategies for computer networks and populations. , 2002, Physical review letters.

[43]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[44]  Alessandro Vespignani,et al.  Immunization of complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[46]  Alessandro Vespignani,et al.  Epidemic dynamics and endemic states in complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[48]  FaloutsosMichalis,et al.  On power-law relationships of the Internet topology , 1999 .

[49]  Michael Y. Li,et al.  Global stability for the SEIR model in epidemiology. , 1995, Mathematical biosciences.

[50]  Steve R. White,et al.  Computers and epidemiology , 1993, IEEE Spectrum.

[51]  Stavros Busenberg,et al.  A Method for Proving the Non-existence of Limit Cycles , 1993 .

[52]  John A. Jacquez,et al.  Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations , 1992 .

[53]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[54]  James S. Muldowney,et al.  Compound matrices and ordinary differential equations , 1990 .

[55]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[56]  Hogg,et al.  Dynamics of computational ecosystems. , 1989, Physical review. A, General physics.

[57]  William Hugh Murray,et al.  The application of epidemiology to computer viruses , 1988, Comput. Secur..

[58]  Roy M. Anderson,et al.  Transmission dynamics of HIV infection , 1987, Nature.

[59]  P. Lancaster,et al.  The theory of matrices : with applications , 1985 .

[60]  A. Klovdahl,et al.  Social networks and the spread of infectious diseases: the AIDS example. , 1985, Social science & medicine.

[61]  R. Ruth,et al.  Stability of dynamical systems , 1988 .

[62]  J. Yorke,et al.  A Deterministic Model for Gonorrhea in a Nonhomogeneous Population , 1976 .

[63]  J. Moon Counting labelled trees , 1970 .