Localized Hexagon Patterns of the Planar Swift-Hohenberg Equation

We investigate stationary spatially localized hexagon patterns of the two-dimensional (2D) Swift–Hohenberg equation in the parameter region where the trivial state and regular hexagon patterns are both stable. Using numerical continuation techniques, we trace out the existence regions of fully localized hexagon patches and of planar pulses which consist of a strip filled with hexagons that is embedded in the trivial state. We find that these patterns exhibit snaking: for each parameter value in the snaking region, an infinite number of patterns exist that are connected in parameter space and whose width increases without bound. Our computations also indicate a relation between the limits of the snaking regions of planar hexagon pulses with different orientations and of the fully localized hexagon patches. To investigate which hexagons among the one-parameter family of hexagons are selected in a hexagon pulse or front, we derive a conserved quantity of the spatial dynamical system that describes planar pat...

[1]  A. Mielke,et al.  Dynamics of Nonlinear Waves in Dissipative Systems Reduction, Bifurcation and Stability , 1996 .

[2]  M. Ahmer Wadee,et al.  Bifurcations of Periodic Solutions Satisfying the Zero-Hamiltonian Constraint in Reversible Differential Equations , 2005, SIAM J. Math. Anal..

[3]  J. F. Toland,et al.  Global Existence of Homoclinic and Periodic Orbits for a Class of Autonomous Hamiltonian Systems , 1995 .

[4]  S. Chapman,et al.  Asymptotics of large bound states of localized structures. , 2006, Physical review letters.

[5]  B. Cantwell,et al.  Introduction to Symmetry Analysis , 2002 .

[6]  Paul H. Rabinowitz,et al.  Periodic solutions of a Hamiltonian system on a prescribed energy surface , 1979 .

[7]  Edgar Knobloch,et al.  Snakes and ladders: Localized states in the Swift–Hohenberg equation , 2007 .

[8]  E. Knobloch,et al.  NORMAL FORM FOR SPATIAL DYNAMICS IN THE SWIFT-HOHENBERG EQUATION , 2007 .

[9]  H. Sakaguchi,et al.  Stable localized squares in pattern-forming nonequilibrium systems , 1997 .

[10]  Edgar Knobloch,et al.  Pattern selection in long-wavelength convection , 1990 .

[11]  Daniele Avitabile,et al.  Computation of planar patterns and their stability , 2008 .

[12]  Hans-Georg Purwins,et al.  HEXAGON STRUCTURES IN A TWO-DIMENSIONAL DC-DRIVEN GAS DISCHARGE SYSTEM , 1998 .

[13]  Björn Sandstede,et al.  Snakes, Ladders, and Isolas of Localized Patterns , 2009, SIAM J. Math. Anal..

[14]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[15]  P. Matthews Hexagonal patterns in finite domains , 1997, patt-sol/9703002.

[16]  Nepomnyashchy,et al.  Wave number selection in convection and related problems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  L. M. Pismen Patterns and Interfaces in Dissipative Dynamics , 2009, Encyclopedia of Complexity and Systems Science.

[18]  E. Knobloch,et al.  Homoclinic snaking: structure and stability. , 2007, Chaos.

[19]  Y. Astrov,et al.  FORMATION OF CLUSTERS OF LOCALIZED STATES IN A GAS DISCHARGE SYSTEM VIA A SELF-COMPLETION SCENARIO , 1997 .

[20]  Stephen M. Cox,et al.  Instability and localisation of patterns due to a conserved quantity , 2003 .

[21]  Edgar Knobloch,et al.  Spatially localized binary-fluid convection , 2006, Journal of Fluid Mechanics.

[22]  M. Golubitsky,et al.  Bifurcation on the hexagonal lattice and the planar Bénard problem , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[24]  J. Fineberg Physics in a jumping sandbox , 1996, Nature.

[25]  B. Matkowsky,et al.  A complex Swift–Hohenberg equation coupled to the Goldstone mode in the nonlinear dynamics of flames , 2003 .

[26]  Alan R. Champneys,et al.  Homoclinic and Heteroclinic Orbits Underlying the Post-Buckling of axially Compressed Cylindrical Shells , 1999 .

[27]  Stephen C. Anco,et al.  Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications , 2001, European Journal of Applied Mathematics.

[28]  Martin Golubitsky,et al.  Symmetries and pattern selection in Rayleigh-Bénard convection , 1984 .

[29]  P. Umbanhowar,et al.  Localized excitations in a vertically vibrated granular layer , 1996, Nature.

[30]  Lev Tsimring,et al.  Localized and Cellular Patterns in a Vibrated Granular Layer , 1997 .

[31]  Hermann Riecke,et al.  Oscillon-type structures and their interaction in a Swift-Hohenberg model , 1998 .

[32]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[33]  P. Matthews,et al.  Compressible magnetoconvection in three dimensions: planforms and nonlinear behaviour , 1995, Journal of Fluid Mechanics.

[34]  G. Bluman,et al.  Direct construction method for conservation laws of partial differential equations Part II: General treatment , 2001, European Journal of Applied Mathematics.

[35]  Hermann Riecke,et al.  Continuum description of vibrated sand , 1998, patt-sol/9801004.

[36]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..

[37]  Alan R. Champneys,et al.  Efficient Numerical Continuation and Stability Analysis of Spatiotemporal Quadratic Optical Solitons , 2005, SIAM J. Sci. Comput..

[38]  B. Billia,et al.  Localized microstructures induced by fluid flow in directional solidification. , 2001, Physical review letters.

[39]  I. Aranson,et al.  Stable particle-like solutions of multidimensional nonlinear fields , 1990 .

[40]  Y. Pomeau Front motion, metastability and subcritical bifurcations in hydrodynamics , 1986 .

[41]  Fergus Finlay,et al.  Snakes and ladders , 1998 .

[42]  Boris S. Gutkin,et al.  Multiple Bumps in a Neuronal Model of Working Memory , 2002, SIAM J. Appl. Math..

[43]  Morched Boughariou Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces , 2003 .

[44]  Björn Sandstede,et al.  Defects in Oscillatory Media: Toward a Classification , 2004, SIAM J. Appl. Dyn. Syst..

[45]  Alexander Mielke,et al.  Instability and Stability of Rolls in the Swift–Hohenberg Equation , 1997 .

[46]  Paul Mandel,et al.  Interaction and stability of periodic and localized structures in optical bistable systems , 2003 .

[47]  Irving R Epstein,et al.  Stationary and oscillatory localized patterns, and subcritical bifurcations. , 2004, Physical review letters.

[48]  W. Firth,et al.  Computationally determined existence and stability of transverse structures. II. Multipeaked cavity solitons. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  C. Fradin,et al.  Electroconvection in nematic liquid crystals: comparison between experimental results and the hydrodynamic model , 1997 .

[50]  A. Newell,et al.  Swift-Hohenberg equation for lasers. , 1994, Physical review letters.

[51]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[52]  G. V. Chester,et al.  Solid State Physics , 2000 .

[53]  Anne C. Skeldon,et al.  Stability results for steady, spatially periodic planforms , 1995, patt-sol/9509004.

[54]  Björn Sandstede,et al.  Localized radial solutions of the Swift–Hohenberg equation , 2009 .

[55]  Bernd Krauskopf,et al.  A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .

[56]  Mark A. Peletier,et al.  Centrum Voor Wiskunde En Informatica Reportrapport Sequential Buckling: a Variational Analysis Sequential Buckling: a Variational Analysis , 2022 .

[57]  Carlo R. Laing,et al.  PDE Methods for Nonlocal Models , 2003, SIAM J. Appl. Dyn. Syst..

[58]  Björn Sandstede,et al.  Propagation of hexagonal patterns near onset , 2003, European Journal of Applied Mathematics.

[59]  S. Residori,et al.  Localized states in bistable pattern-forming systems. , 2005, Physical review letters.

[60]  B. Malomed,et al.  Domain boundaries in convection patterns. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[61]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[62]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[63]  E. Knobloch,et al.  Localized states in the generalized Swift-Hohenberg equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Gregory Kozyreff,et al.  Exponential asymptotics of localised patterns and snaking bifurcation diagrams , 2009 .

[65]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[66]  E. Dulos,et al.  Dividing Blobs, Chemical Flowers, and Patterned Islands in a Reaction−Diffusion System , 1998 .

[67]  Interface mobility under different driving forces , 2002 .

[68]  Björn Sandstede,et al.  Relative Morse indices, Fredholm indices, and group velocities , 2007 .

[69]  Stefania Residori,et al.  Patterns, fronts and structures in a Liquid-Crystal-Light-Valve with optical feedback , 2005 .

[70]  Thomas Wagenknecht,et al.  Homoclinic snaking near a heteroclinic cycle in reversible systems , 2005 .

[71]  W. Firth,et al.  Bifurcation structure of dissipative solitons , 2007 .

[72]  Brand,et al.  Two-dimensional localized solutions for subcritical bifurcations in systems with broken rotational symmetry. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[73]  Martin Fowler,et al.  Patterns , 2021, IEEE Software.

[74]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[75]  C. J. Budd,et al.  Asymptotics of cellular buckling close to the Maxwell load , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[76]  Arjen Doelman,et al.  Dynamics of patterns , 2005 .

[77]  Shraiman,et al.  Nonadiabatic effects in convection. , 1988, Physical review. A, General physics.

[78]  Edgar Knobloch,et al.  Spatially localized structures in dissipative systems: open problems , 2008 .

[79]  Dewel,et al.  Pattern selection in the generalized Swift-Hohenberg model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[80]  O. Batiste,et al.  Spatiotemporal dynamics near the onset of convection for binary mixtures in cylindrical containers. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  G. W. Hunt,et al.  Cellular Buckling in Long Structures , 2000 .

[82]  Björn Sandstede,et al.  Exponential Dichotomies for Solitary-Wave Solutions of Semilinear Elliptic Equations on Infinite Cylinders , 1997 .

[83]  Alan R. Champneys,et al.  Computation of Homoclinic Orbits in Partial Differential Equations: An Application to Cylindrical Shell Buckling , 1999, SIAM J. Sci. Comput..

[84]  Paul C. Fife,et al.  Pattern Formation in Gradient Systems , 2002 .

[85]  Rachel Kuske,et al.  Localized periodic patterns for the non-symmetric generalized Swift-Hohenberg equation , 2005 .

[86]  W. Firth,et al.  Two-dimensional clusters of solitary structures in driven optical cavities. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  P. Coullet,et al.  Stable static localized structures in one dimension , 2000, Physical review letters.

[88]  P. D. Woods,et al.  Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopft bifurcation , 1999 .