Surface Imaging Functions for Elastic Reverse Time Migration

Reverse time migration is often used to interpret acoustic or three‐component seismic recordings by creating an image of subsurface seismic reflectors. Here I describe elastic reverse time migration imaging functions that are cast as waveform misfit sensitivity kernels of contrasts in material parameters across hypothetical seismic discontinuities, that is, specular reflectors. The proposed “surface” imaging functions are theoretically applicable to either reflected or converted waves in order to estimate the location and reflectivity of these discontinuities. The surface imaging functions, as well as volumetric sensitivity kernels that target point diffractors, are tested on sets of synthetic surface array recordings that sample the 3‐D seismic wavefield on simple 2‐D structures generated using a 2.5‐D spectral element method. These tests illustrate that in contrast with the volumetric sensitivity kernels, the reflectivity is generally dominated by a high‐amplitude peak that coincides with input locations of discontinuities. Passive recordings of microseismicity, shot gathers, or a combination thereof can be potentially interpreted with the new surface imaging functions to yield useful reflectivity images.

[1]  Qiancheng Liu,et al.  Efficient dip‐angle angle‐domain common‐image gather estimation using Poynting vector in acoustic reverse time migration and its application in noise suppression , 2018, Geophysical Prospecting.

[2]  N. Nakata,et al.  Imaging a Crustal Low‐Velocity Layer Using Reflected Seismic Waves From the 2014 Earthquake Swarm at Long Valley Caldera, California: The Magmatic System Roof? , 2018 .

[3]  Hua-wei Zhou,et al.  Reverse time migration: A prospect of seismic imaging methodology , 2018 .

[4]  Zhenchun Li,et al.  Elastic least-squares reverse time migration with velocities and density perturbation , 2018 .

[5]  Jiahang Li,et al.  Three‐Dimensional Passive‐Source Reverse‐Time Migration of Converted Waves: The Method , 2018 .

[6]  G. McMechan,et al.  Multidirectional-vector-based elastic reverse time migration and angle-domain common-image gathers with approximate wavefield decomposition of P- and S-waves , 2018 .

[7]  B. Schmandt,et al.  P and S Wave Receiver Function Imaging of Subduction With Scattering Kernels , 2017 .

[8]  3D reverse time migration using wavefield decomposition based on Hilbert transform , 2017 .

[9]  Mrinal K. Sen,et al.  Least-squares reverse time migration in elastic media , 2017 .

[10]  B. Arntsen,et al.  Scalar and vector imaging based on wave mode decoupling for elastic reverse time migration in isotropic and transversely isotropic media , 2016 .

[11]  P. Sava,et al.  Isotropic elastic wavefield imaging using the energy norm , 2016 .

[12]  W. Symes,et al.  Scattering and dip angle decomposition based on subsurface offset extended wave-equation migration , 2016 .

[13]  S. Shapiro,et al.  Microseismic reflection imaging of the Central Andean crust , 2016 .

[14]  Ilya Silvestrov,et al.  Poststack diffraction imaging using reverse‐time migration , 2016 .

[15]  C. Tape,et al.  Finite-frequency sensitivity kernels of seismic waves to fault zone structures , 2015 .

[16]  Gang Yao,et al.  Least‐squares reverse‐time migration in a matrix‐based formulation , 2015 .

[17]  T. Moser,et al.  High Resolution Diffraction Imaging of Small Scale Fractures in Shale and Carbonate Reservoirs , 2015, Proceedings.

[18]  Paul Sava,et al.  Scalar imaging condition for elastic reverse time migration , 2015 .

[19]  E. Landa,et al.  Multifocusing 3D diffraction imaging for detection of fractured zones in mudstone reservoirs: Case history , 2015 .

[20]  Yu Zhang,et al.  A stable and practical implementation of least-squares reverse time migration , 2013 .

[21]  F. Pollitz,et al.  Regional seismic-wave propagation from the M5.8 23 August 2011, Mineral, Virginia, earthquake , 2015 .

[22]  Chong Zeng,et al.  Least-squares reverse time migration: Inversion-based imaging toward true reflectivity , 2014 .

[23]  Junfeng Wang,et al.  Measurement of Sharpness and Its Application in ISAR Imaging , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[24]  H. Calandra,et al.  3D coupled acoustic-elastic migration with topography and bathymetry based on spectral-element and adjoint methods , 2013 .

[25]  A. Reshetnikov Microseismic reflection imaging , 2013 .

[26]  M. V. Hoop,et al.  Beyond receiver functions: Passive source reverse time migration and inverse scattering of converted waves , 2012 .

[27]  Rui Yan,et al.  An angle-domain imaging condition for elastic reverse time migration and its application to angle gather extraction , 2012 .

[28]  Changsoo Shin,et al.  Implementation of elastic reverse-time migration using wavefield separation in the frequency domain , 2012 .

[29]  Yu Zhang,et al.  Application of RTM 3D angle gathers to wide-azimuth data subsalt imaging , 2011 .

[30]  Zheng-Zheng Zhou,et al.  Use of RTM full 3D subsurface angle gathers for subsalt velocity update and image optimization: Case study at Shenzi field , 2011 .

[31]  Yu Zhang,et al.  3D angle gathers from reverse time migrationXu et al.RTM 3D angle gathers , 2011 .

[32]  Scott A. Morton,et al.  An effective imaging condition for reverse-time migration using wavefield decomposition , 2011 .

[33]  Z. Koren,et al.  Full-azimuth subsurface angle domain wavefield decomposition and imaging Part I: Directional and reflection image gathers , 2011 .

[34]  3 D angle gathers from reverse time migration , 2011 .

[35]  J. Tromp,et al.  Elastic imaging and time-lapse migration based on adjoint methods , 2009 .

[36]  Three‐dimensional passive seismic waveform imaging around the SAFOD site, California, using the generalized Radon transform , 2009 .

[37]  Stefan Buske,et al.  Seismic imaging using microseismic events: Results from the San Andreas Fault System at SAFOD , 2008 .

[38]  Paul Sava,et al.  Isotropic angle-domain elastic reverse-time migration , 2008 .

[39]  Roel Snieder,et al.  Interferometry by deconvolution: Part 2 — Theory for elastic waves and application to drill-bit seismic imaging , 2008 .

[40]  George A. McMechan,et al.  Imaging conditions for prestack reverse-time migration , 2008 .

[41]  H. Denli,et al.  Elastic-wave Reverse-time Migration With a Wavefield-separation Imaging Condition , 2008 .

[42]  S. Greenhalgh,et al.  2.5D modelling of elastic waves in transversely isotropic media using the spectral element method , 2007 .

[43]  Antoine Guitton,et al.  Least-squares attenuation of reverse-time-migration artifacts , 2007 .

[44]  Kurt J. Marfurt,et al.  Reverse-Time Migration using the Poynting Vector , 2006 .

[45]  Ru-Shan Wu,et al.  Multicomponent prestack depth migration using the elastic screen method , 2005 .

[46]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[47]  W. Symes,et al.  Angle‐domain common‐image gathers for migration velocity analysis by wavefield‐continuation imaging , 2004 .

[48]  Paul Sava,et al.  Angle-domain common-image gathers by wavefield continuation methods , 2003 .

[49]  Gary L. Pavlis,et al.  Three‐dimensional, prestack, plane wave migration of teleseismic P‐to‐S converted phases: 1. Theory , 2003 .

[50]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[51]  Biondo Biondi,et al.  Prestack imaging of overturned reflections by reverse time migration , 2002 .

[52]  Roel Snieder,et al.  GENERAL THEORY OF ELASTIC WAVE SCATTERING , 2002 .

[53]  Michael G. Bostock,et al.  Multiparameter two-dimensional inversion of scattered teleseismic body waves 1. Theory for oblique incidence , 2001 .

[54]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[55]  Oong K. Youn,et al.  Depth Imaging With Multiples , 1999 .

[56]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[57]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[58]  J. Claerbout Earth Soundings Analysis: Processing Versus Inversion , 1992 .

[59]  J. Etgen,et al.  Wave-field separation in two-dimensional anisotropic media , 1990 .

[60]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[61]  George A. McMechan,et al.  3D ACOUSTIC REVERSE-TIME MIGRATION1 , 1989 .

[62]  G. McMechan,et al.  Elastic reverse-time migration , 1987 .

[63]  Gregory Beylkin,et al.  A new slant on seismic imaging: Migration and integral geometry , 1987 .

[64]  G. McMechan,et al.  Pre-stack reverse-time migration for elastic waves with application to synthetic offset vertical seismic profiles , 1986, Proceedings of the IEEE.

[65]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[66]  E. Baysal,et al.  Reverse time migration , 1983 .

[67]  G. McMechan MIGRATION BY EXTRAPOLATION OF TIME‐DEPENDENT BOUNDARY VALUES* , 1983 .

[68]  Irshad R. Mufti,et al.  Reversed time migration in spatial frequency domain , 1983 .

[69]  N. Whitmore Iterative Depth Migration By Backward Time Propagation , 1983 .

[70]  R. Wiggins Minimum entropy deconvolution , 1978 .

[71]  G. H. F. Gardner,et al.  FORMATION VELOCITY AND DENSITY—THE DIAGNOSTIC BASICS FOR STRATIGRAPHIC TRAPS , 1974 .

[72]  J. Claerbout Toward a unified theory of reflector mapping , 1971 .